A New Reagent for the Determination of the Optical Purity of Primary, Secondary, and Tertiary Chiral Alcohols and of Thiols

Alexandre Alexakis,* Stephane Mutti, and Pierre Mangeney

Laboratoire de Chimie des Organo-Eléments, CNRS UA 473, Université P. et M. Curie, 4, Place Jussieu, F-75252 Paris Cedex 05, France

Received May 22, 1991

A new reagent is described for the determination of the enantiomeric excess of chiral alcohols. This derivatizing agent (22) is a diazaphospholidine, easily prepared from hexamethylphosphorous triamide (HMPT) and a chiral diamine having a C_2 axis of symmetry: (R,R)-N,N'-dimethylcyclohexane-1,2-diamine. A large array of primary, secondary, and tertiary alcohols, functionalized or not, as well as thiols were successfully tested. The derivatization is fast at room temperature, proceeds without kinetic discrimination, does not need any added cosolvent or coreagent, and may be run directly in an NMR tube. This new reagent allows an accurate analysis by ³¹P NMR spectroscopy, and after conversion of the trivalent phosphorus derivative to the corresponding P-sulfide in the NMR tube, a new ³¹P NMR spectrum may be recorded. In addition, most of the P-sulfide derivatives when submitted to GC or HPLC analyses exhibit base line separation.

Introduction

The determination of the optical purity of a chiral alcohol is a constant need. This measure can be performed by numerous analytical procedures.^{1,2} Polarimetry is usually used for comparative purposes with literature data, but is not usually considered sufficiently accurate or reliable.¹ Chromatographic analyses may be done on chiral phases³ or, alternatively, after derivatization with an optically pure reagent to form a pair of diastereoisomers which can be analyzed on achiral phases.^{3b,4} However, one of the most popular techniques uses NMR spectra of various nuclei.^{1,5}

NMR analyses may be performed with chiral complexing reagents,⁶ chiral lanthanide shift reagents,⁷ or after derivatization with optically pure reagents.⁸ Among the various chiral derivatizing agents (CDA), Mosher's reagent 1 enjoys a strong preference.⁹ The so called MTPA derivatives 2 can be analyzed by ¹H, ¹³C, and ¹⁹F NMR spectroscopy as well as by gas or liquid chromatography (Chart I). Quite often, MTPA derivatives are used in combination with a lanthanide shift reagent, particularly

(4) Shurig, V. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: New York, 1983; Vol. 1, Chapter 2.

(5) Rinaldi, P. L. Proc. Prog. Nucl. Mag. Res. Spectrosc. 1982, 15, 291.
(6) (a) Weisman, G. R. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: New York, 1983; Vol. 1, Chapter 8. (b) Rosini, C.; Ucello-Carretta, G.; Pini, D.; Abete, C.; Salvadori, P. J. Org. Chem. 1988, 53, 4579. (c) Shapiro, M. J.; Archinal, A. E.; Jarema, M. A. J. Org. Chem. 1989, 54, 5826 and references cited therein.

(7) (a) Sullivan, G. R. Topics in stereochemistry; Eliel, E. L., Wilen,
 S. H., Eds.; Wiley-Interscience: New York, 1978; Vol. 10, p 287. (b)
 Fraser, R. R. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: New York, 1983; Vol. 1, Chapter 9.

Fraser, K. K. In Asymmetric Synthesis; Morrison, J. D., Eu., Academic Press: New York, 1983; Vol. 1, Chapter 9.
(8) (a) Yamaguchi, S. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: New York, 1983; Vol. 1, Chapter 7. (b) Michelsen, P.; Gronowitz, S. Chem. Scripta 1984, 24, 251. (c) Barelle, M.; Hamman, S. J. Chem. Res., Synop. 1990, 100. (d) Silks, L. A., III; Dunlap, R. B.; Odom, J. D. J. Am. Chem. Soc. 1990, 112, 4979 and references cited therein. (e) Miyano, S.; Okada, S. I.; Hotta, H.; Takeda, M.; Suzuki, T.; Kabuto, C.; Yasuhara, F. Bull. Chem. Soc. Jpn. 1989, 62, 3886. (f) Trost, B. M.; Belletire, J. L.; Godleski, S.; Mc Doughs, P. G.; Balkove, J. M. J. Org. Chem. 1986, 51, 2370. (g) Terunuma, D.; Kato, M.; Kamei, M.; Uchida, H.; Ueno, S.; Nohiro, H. Bull. Chem. Soc. Jpn. 1986, 59, 3581. (h) Chan, T. H.; Peng, Q. J.; Wang, D.; Gue, J. A. J. Chem. Soc., Chem. Commun. 1987, 325. (i) Vigneron, J. P.; Dhaemens, M.; Horeau, A. Tetrahedron 1973, 29, 1055.

(9) (a) Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543.
 (b) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512.

when the absolute configuration has to be determined.¹⁰ Despite these advantages, the formation¹¹ and the analysis of these derivatives are often troublesome and new CDA's have been, recently, developed. Noteworthy are the ones based on ³¹P NMR analysis such as 3, 3S, 4, 5, and 6 (Chart II). The sensitivity of this nucleus is quite high, and the spectra are not plagued by extra signals other than the signals of the diastereomeric pair.

The achiral reagents 3, and 3S, introduced by Feringa,¹² react twice with 2 equiv of the chiral alcohol to produce diastereomeric O,O-dialkyl phosphonates. Thus, three signals are obtained with a racemic alcohol, two for the meso form and one for the d,l pair. Reagent 4, although described as unstable by Johnson,¹³ was recently reintroduced by Kato.¹⁴ This reagent as well as reagent 5, de-

0022-3263/92/1957-1224\$03.00/0 © 1992 American Chemical Society

⁽¹⁾ Morrison, J. D. Asymmetric Synthesis; Academic Press: New York, 1983; Vol. 1.

⁽²⁾ Jacques, J.; Collet, A.; Wilen, S. H. Enantiomers, Racemates and resolutions; John Wiley: New York, 1981.

^{(3) (}a) Shurig, V.; Nowotny, H. R. Ang. Chem., Int. Ed. Engl. 1990, 29, 939 and references cited therein. (b) Pirkle, H.; Finn, J. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: New York, 1983; Vol. 1, Chapter 6.

^{(10) (}a) Yamagushi, S.; Yasuhara, F.; Kabuto, K. Tetrahedron 1976, 32, 1363. (b) Yasuhara, F.; Yamagushi, S. Tetrahedron Lett. 1977, 18, 4085. (c) Van de Wal, A. J.; Merckx, E. M.; Lemière, G. L.; Van Osselaer, T. A.; Lepoivre, J. A.; Alderweireldt, F. C. Bull. Soc. Chim. Belg. 1978, 87, 545. (d) Merckx, E. M.; Lepoivre, J. A.; Lemière, G. L.; Alderweireldt, F. C. Org. Magn. Reson. 1983, 21, 380.
(11) Jeanneret-Gris, G.; Ponsaz, P. Tetrahedron Lett. 1990, 31, 75.

⁽¹¹⁾ Jeanneret-Gris, G.; Ponsaz, P. Tetrahedron Lett. 1990, 31, 75.
(12) (a) Feringa, B. L.; Smaardijk, A.; Wynberg, H. J. Am. Chem. Soc. 1985, 107, 4798.
(b) Feringa, B. L.; Smaardijk, A.; Wynberg, H. Tetrahedron Lett. 1986, 27, 997.
(c) Strigtveen, B.; Feringa, B. L.; Kellog, R. M. Tetrahedron 1987, 43, 123.
(d) Feringa, B. L. J. Chem. Soc., Chem. Commun. 1987, 696.

⁽¹³⁾ Johnson, C. R.; Elliott, R. C.; Penning, T. D. J. Am. Chem. Soc. 1984, 106, 5019.

Scheme I

scribed by Shapiro,¹⁵ are unique in that the phosphorus atom is not chiral, owing to the C2 axis of symmetry of the chiral glycol. Therefore, either retention or inversion at phosphorus during derivatization of an enantiomerically pure alcohol vields a single diastereoisomer. This is not the case with reagent 6, introduced by Johnson,¹³ where the phosphorus atom is chiral. Although it usually reacts with retention of configuration,¹⁶ a recent paper warns against some stereochemical scrambling.¹⁷

Our recent work on chiral diamines¹⁸ having also a C_2 axis of symmetry taught us that much higher stereodifferentiations are usually attained whenever they can replace a diol. We have therefore prepared various phosphorylated reagents in the hope that they would be much more efficient than the previous ones. This article describes in detail our work in this area.¹⁹

Pentavalent Phosphorus Derivatives

Scheme I summarizes the five derivatives we have prepared. According to known procedures,²⁰ phosphorus oxychloride or phosphorus thiochloride were allowed to react with the diamine in refluxing toluene in the presence of 2 equiv of triethylamine. Phosphoramides 7 and 8 were obtained in 75% and 90% yield, respectively, after distillation, and 9 could be purified by column chromatography in 92% yield. However, 9S and 10 were unstable to purification; 9S was pure enough in crude form to be further used, whereas 10 could be recrystallized in 56% yield.

These derivatives were evaluated by their reactions with 2-butanol (11) for which much comparative data is Scheme II

M = Li or Na

available. However, the reactivity of derivatives 7-10 proved to be very poor. 2-Butanol did not react in THF in the presence of 2 equiv of triethylamine, but gave several byproducts probably arising from the opening of the diazaphospholane ring. Such an anomalous reaction was also observed by Shapiro¹⁵ and Johnson.¹³ The use of other bases (DMAP, DBU, or DABCO) or other solvents (CH₂Cl₂, DMF) did not affect decisively this result. However, when we turned to the lithium or sodium alcoholate,¹³ we did solve this problem.

Thus, the lithium alcoholate was formed with nBuLi and the sodium one with NaH. The chiral derivatizing agent 7-10 was then added, and the mixture was refluxed in THF for 2-6 h. (Scheme II). Problems were encountered with nBuLi which always contains traces of nBuOLi, and the NaH procedure was preferred. Under these conditions, the reaction is clean and quantitative, and the desired diasteromeric pairs of derivatives 11PO and 11'PO could be analyzed by ³¹P NMR. The results are reported in Table I along with the ones obtained with alcohols 12-19.

Reagent 7 did not react with 2-butanol (11, entry 1), even after prolonged heating. Steric crowding around the phosphorus atom may account for this lack of reactivity. The diastereoisomeric pairs obtained with reagents 8-10 (entries 2-5) all gave significant differences in ³¹P chemical shifts ($\Delta\delta$). All these values compare very favorably with literature data and fulfill our expectations. Moreover, an interesting solvent effect was observed: in C_6D_6 , the $\Delta\delta$ are higher than in $CDCl_3$ (entries 3, 5, and 6). It should, also, be observed that 9S, the thio analogue of 9, displays smaller differences in $\Delta \delta$ (compare entries 3 and 4 and also entry 2 in Table I with entry 1 in Table III), in contrast to Johnson's report with 6¹³ and Feringa's result with 3S.^{12c} In addition, reagent 9S is much less reactive than its oxygenated analogue 9, probably because of the lesser polarization of the P=S bond, as compared to the P=O bond.²¹ Finally, although reagent 10 seems the most effective (entry 5) by ³¹P NMR analysis, we did not observe as we hoped, any significant $\Delta \delta$ by ¹⁹F NMR. The corresponding diamine was described by us to be an efficient reagent for the determination of the optical purity of chiral aldehydes by ¹⁹F NMR.^{18c}

Among the other secondary alcohols examined (entries 6-10), only the unhindered ones reacted cleanly and quantitatively, and the observed differences in chemical shift $(\Delta \delta)$ are much larger than the literature data. As shown below, propargylic secondary alcohols 14 and 16 are particularly interesting cases and reagent 8 is very well suited for these alcohols. Such alcohols display the largest $\Delta \delta$ values, an observation also made by Shapiro.¹⁵ C-Silylated propargylic alcohols, such as 17, are not suited since they are partly desilvlated, owing to the strongly basic conditions (NaH) during the derivatization. Finally, no reaction was observed with the very hindered 2-tert-bu-

⁽¹⁴⁾ Kato, N. J. Am. Chem. Soc. 1990, 112, 254.
(15) Anderson, R. C.; Shapiro, M. J. J. Org. Chem. 1984, 49, 1304.
(16) Boche, G.; Schrott, W. Tetrahedron Lett. 1982, 23, 5403.
(17) Cullis, P. M.; Lagrossi, A.; Rous, A. J.; Schilling, M. B. J. Chem.

Soc., Chem. Commun. 1987, 996. (18) (a) Alexakis, A.; Lensen, N.; Mangeney, P. Tetrahedron Lett.

^{1991, 32, 1171. (}b) Gosmini, R.; Mangeney, P.; Alexakis, A.; Commerçon, M.; Normant, J. F. Synlett 1991, 111. (c) Cuvinot, D.; Mangeney, P.; M.; Normant, J. F. Syniett 1991, 111. (c) Cuvinot, D.; Mangeney, P.;
Alexakis, A.; Normant, J. F. J. Org. Chem. 1989, 54, 2420.
(19) For a preliminary account of this work see: Alexakis, A.; Mutti,
S.; Mangeney, P.; Normant, J. F. Tetrahedron Asymmetry 1990, 1, 437.
(20) Hall, C. R.; Inch, T. D. J. Chem. Soc., Perkin Trans. 1 1979, 1104.

⁽²¹⁾ Ketelaar, H. R.; Gersmann, H.; Koopmans, K. Rec. Trav. Chim. Pays-Bas 1952, 71, 1253.

		Table I. Evalu	le I. Evaluation of CDA's 7-11 with Various Chiral Alcohols (See Scheme II)										
	phospho- rus	stru	icture		δ (ppm) ³¹ P of deriva- to. the diastereomers tives	pair of deriva-							
entry	reagent	alcohol	R	no.		tives	Δδ (ppm)	lit. data Δδ	observations				
1	7		Et	11		11 POa			no reaction				
2	8				24.393 and 24.056	11 POb	0.337 ^b	$0.0056^{c,d}$ $0.200^{b,e}$					
3	9				24.701 and 24.226	11 POc	0.475° 0.404 ^b	0.350 [/] 0.296 ^g					
4	9 S				82.448 and 82.111	11 PSc	0.337 ^b	0.531^{h}					
5	10				24.230 and 24.691	11 POd	0.539° 0.471 ^b						
6	9		nC_6H_{13}	12	24.768 and 24.282	12PO	0.486° 0.471 ^b	0.307 ^{b,e} 0.383 [/]					
7	9		iPr	13	24.634 and 23.998	1 3PO	0.636 ^b	$0.167^{b,e}$					
8	8		C=CH	14	23.422 and 22.749	14PO	0.673						
9	9			15	24.903 and 24.338	15PO	0.565^{c} 0.455^{b}						
10	8		Н	16	24.373 and 23.437	16 PO	0.936						
11	8		SiMe ₃	17	24.162 and 22.827	17 PO	1.335		see text				
12	9			18					no reaction				
13	9	, , , , , , , , , , , , , , , , , , ,		19					no reaction				

^aAll the alcohols are racemic mixtures. ^bTaken in CDCl₃. ^cTaken in C₆D₆. ^dReference 15. ^eReference 13. ^fReference 12a. ^gReference 12b. ^hReference 12c.

tylcyclohexan-1-ol (18) or with tertiary alcohols, such as linalool (19).

Thus, although quite efficient, the methodology based on pentavalent phosphorus derivatives cannot be of general use. Our studies on the corresponding trivalent phosphorus reagents were much more successful in the discovery of a reagent of wide applicability and high reactivity.

Trivalent Phosphorus Derivatives

It is well-known that the P–N bond of aminophosphines is very easily cleaved by alcohols,²² and Burgada has shown that the exocyclic P–N bond is preferentially cleaved in diazaphospholidines²³ (eq 1): It is easy to understand that

(22) (a) Burgada, R. Ann. Chim. 1966, 1, 15. (b) Mukaiyama, T. Bull. Soc. Chim. Jpn. 1966, 39, 1297.

a chiral diamine fits ideally into this scheme. Thus, reagents 20, 21, and 22 were prepared by amine exchange with $P(NMe_2)_3^{23}$ (Scheme III). The reaction is complete after 2–5 days of reflux in benzene or toluene. Reagent 20 could not be purified either by chromatography or by distillation and was used crude. Reagents 21 and 22 were obtained in 86% and 85% yield, respectively, after distillation.

Reagents 20-22 are stable for months under inert atmosphere but are very sensitive to moisture. The exocyclic P-N bond is readily cleaved²⁴ as shown for reagent 22 (eq 2) which gave product 23: For this reason, reagents 20-22 were conveniently stored as ~ 0.2 M solution in toluene and taken by syringe when needed. The derivatizing procedure involves the alcoholysis of the exocyclic P-N bond in analogy to the hydrolysis shown above. Thus, the optically active alcohol (11-53) is added to a slight excess

⁽²³⁾ Burgada, R. Bull. Soc. Chim. Fr. 1971, 136.

⁽²⁴⁾ Houalla, D.; Sanchez, M.; Wolf, R. Bull. Soc. Chim. Fr. 1965, 2368.

(1.1 equiv) of CDA in toluene and stirred (2-15 h) until no dimethylamine is evolved (checked with pH paper). Since the diastereomeric pair of derivatives 11P-53P and 11'P-53'P is not stable to TLC or GC analysis, a more reliable way was sought to check the completion of the reaction. This task was accomplished by conversion to the thiophosphoramidate with sulfur (S₈) powder²⁵ (Scheme IV). This reaction is quantitative and instantaneous, and the thio derivatives 11PS-53PS were, this time, air stable compounds easily analyzable by TLC or GC.

The effectiveness of reagents 20–22 was again evaluated with 2-butanol (11), and the results are quoted in Table II. It is clear that trivalent phosphorus CDA's 20 and 22 are incomparably more efficient than the pentavalent ones 7–10. The largest value of the difference of chemical shift $(\Delta\delta)$, 3.7 ppm, obtained with 22 (entry 3), should also be compared with the values previously obtained by Shapiro with 5 (0.0056 ppm),¹⁵ by Johnson with 6 (0.200 ppm),¹³ or by Feringa with 3 (0.350 ppm)!^{12b} Thus, reagent 22 was chosen as our standard new CDA and evaluated with a variety of chiral alcohols in order to explore the scope of its effectiveness.

Evaluation of Reagent 22

Reagent 22 was easily prepared from $P(NMe_2)_3$ and (R,R)-N,N'-dimethylcyclohexane-1,2-diamine, itself obtained from commercially available (R,R)-cyclohexane-1,2-diamine. It reacted with all of the chiral alcohols (11-53) tested thus far, regardless of their steric bulk, in toluene solution, at room temperature within a few hours, to give the derivatives 11P-53P (see Scheme IV). No other cosolvent or coreagent are needed, and the reaction may be run in an NMR tube. A small amount of C_6D_6 was added in the NMR tube for locking, and the spectrum was recorded. The ³¹P NMR spectrum shows a small singlet of the starting reagent 22 (δ 122.5 ppm), sometimes a small singlet for the hydrolysis product 23 (δ 19.5 ppm), and two equal singlets (for racemic alcohols) (δ 130–145 ppm) for the diastereomeric pair 11P-53P. Integration of these singlets can be done very accurately. Once this first ³¹P NMR spectrum was recorded, S₈ was added into the NMR tube and the spectrum of the new thio derivatives 11PS-53PS (see Scheme IV) was recorded. In many other cases optically enriched alcohols were tested, and the accuracy of our method could be compared with ee values obtained by other means. Excellent agreement was obtained in all cases. The excess of reagent 22 is also converted to 22PS, but its NMR singlet does not interfere (δ 83.5 ppm). Neither do those of other byproducts interfere, such as the hydrolysis product 23. Derivatives 11PS-53PS display (a)

J. Org. Chem., Vol. 57, No. 4, 1992 1227

Figure 1. ³¹P NMR (36.22 MHz) spectrum of a 99:1 mixture of menthol derivatives 26P (a and b); (c) signal of CDA 22; (d) signal of hydrolyzed CDA 23; (e) reference H_3PO_4 .

singlets in the range δ 79–89 ppm.

The variety of the tested chiral alcohols is shown in Tables III (secondary alcohols), IV (tertiary alcohols), and V (primary alcohols). In all cases optically pure reagent 22 was used (from (R,R)-N,N'-dimethylcyclohexane-1,2-diamine), except when the chiral alcohol was available only in optically pure form, in which case racemic 22 was used instead. Thus, the diastereomeric pair of derivatives was always observed. It is important to note that we never observed any kinetic resolution²⁶ when the reactions were followed from the begining up to the end, even with the most hindered alcohols tested (see for example, 2-tert-butylcyclohexan-1-ol (18), or borneol (28) in Table III or tertiary alcohols in Table V). The integration of the signals for these racemic mixtures always corresponds to 50:50 ($\pm 2\%$).

Simple secondary alcohols (Table III, entries 1-5) are clearly distinguished, and their purity could be accurately measured. More hindered ones such as (-)-menthol (26). (+)-neomenthol (27), and (-)-borneol (28) (Table III, entries 6-9) display very large $\Delta\delta$ values. In the case of menthol (26), we purposely prepared a 99:1 mixture of the two enantiomers in order to determine the precision of our method. As shown in Figure 1 the minor enantiomer is easily distinguished. A variety of functionalized alcohols were also tested. In contrast to allylic alcohol 25 (Table III, entry 4), which reacts normally, propargylic alcohol 17 undergoes rapid [2,3] rearrangement.²⁷ Nevertheless, it is possible to observe the signals corresponding to 17P which display a very high $\Delta \delta$. However, the non-C-silvlated alcohols 14 and 16 rearrange too fast (see Scheme V). Such rearrangements are known to occur with complete stereocontrol. Thus, we hoped to be able to determine the optical purity on the chiral phosphoallene 49. However, dimethylamine, produced by cleavage of the exocyclic P-N bond, reacted with the allene to give ultimately the enamine 50. Such a process was already described a few years ago by Sturtz^{28a} and Altenbach.^{28b,c} Thus, the determination of the optical purity of propargylic alcohols is better performed with our previous reagent 8 which cannot give rise to such a rearrangement (see above).

Another drawback was encountered with diols, such as 1,3-butanediol (30) (entry 12) which cyclizes into a diox-

⁽²⁶⁾ See, for example: Dutcher, J. S.; Mc Millan, J. G.; Heathcock, C. H. J. Org. Chem. 1976, 41, 2663.

^{(27) (}a) Landor, S. R. In The Chemistry of the Allenes; Academic Press: London, 1982. (b) Schuster, H. F.; Coppola, G. M. In Allenes in Organic Synthesis; John Wiley: New York, 1984. (c) Kitano, Y.; Matsumoto, T.; Sato, F. Tetrahedron 1988, 44, 4073. (d) Curtin, M. L.; Okamura, W. H. J. Org. Chem. 1990, 55, 5278.

⁽²⁵⁾ Gerrard, W.; Hudson, H. R. Organic Phosphorus Compounds; Kosolapoff, G. M.; Maier, L., Eds.; Wiley-Interscience: New York, 1973; Vol. 5.

Organic Synthesis, only wheely. New York, 1904, 1904, (c) Atlanti, 1., Matsumation, T.; Sato, F. Tetrahedron 1988, 44, 4073. (d) Curtin, M. L.;
 Okamura, W. H. J. Org. Chem. 1990, 55, 5278.
 (28) (a) Sturtz, G. Bull. Soc. Chim. Fr. 1967, 1345. (b) Altenbach, H. J.;
 Korff, R. Tetrahedron Lett. 1981, 22, 5175. (c) Altenbach, H. J.; Korff, R. Ang. Chem. Suppl. 1982, 777. (d) Denmark, S. E.; Marlin, J. E. J. Org. Chem. 1991, 56, 1003.

Alexakis	et	al.

entry	phosphorus reagent	δ (ppm) ³¹ P of the diastereomers ^a	product no.	Δδ (ppm)	δ (ppm) ³¹ P of the sulfurated diastereomers ^a	product no.	Δδ (ppm)
1	20	142.295 and 140.478	11Pc	1.817	82.448 and 82.111	11PSc	0.337
2	21	124.109	11Pa	0.0	76.726 and 76.592	11PSa	0.134
3	22	139.387 and 135.685	11Pb	3.702	86.474 and 86.205	11PSb	0.269

Scheme V

^a Taken in C₆D₆.

49

aphospholane derivative with cleavage of the diazaphospholane ring (Scheme VI). The phosphorus atom becomes chiral, and many signals appear in the ³¹P NMR spectrum. For such alcohols, camphanyl boronic acid was recently proposed as CDA.²⁹

(S)-(-)-Ethyl lactate (31) and (S)-(+)benzoin (32)³⁰ are easily enolizable alcohols. Indeed, an aged bottle of 31 exhibited only 35% ee whereas a freshly purchased one was enantiomerically pure. No enolization was observed during the derivatization procedure. In this case, we have also checked the ee via the MTPA derivative (entry 13). Alcohol 34³¹ (Table III, entry 17) was chosen because of the possibility of β -elimination of the derivatives 34P or 34PS to give the corresponding enone-chalcone. However, this reaction did not take place. Finally we should note that β -chloro- 33 or β -amino- (from (+)-ephedrine (35)) alcohols (Table III, entries 15 and 17) also behave normally.

Thus, reagent 22 shows excellent reactivity toward hindered alcohols, and yet it is very mild toward sensitive functionalities. Tertiary alcohols are known to be among the most difficult cases, giving rise to elimination products

(A) ³¹P NMR (100.61 MHz) spectrum of racemic Figure 2. linalool (19P). (B) ³¹P NMR (36.22 MHz) spectrum of (S)-isopropylidene glycerol 44P (ee 76.4%).

or displaying strong kinetic resolution.¹ In our hands, linalool (19) (Table IV, entry 1) reacted very well, but gave only a small difference in chemical shift of derivatives 19P and none for the thio derivative 19PS. Nevertheless, as shown in Figure 2A, the ³¹P NMR peaks for diastereomeric derivatives 19P show base line separation. The determination of the optical purity of linalool was previously determined with a chiral shift reagent.³² Two other tertiary alcohols, 36 and 37, were tested. Only the benzylic alcohol 37 could be clearly resolved, whereas alcohol 36 was not. Thus, it seems that the difference in chemical shift is sensitive not only to steric factors but also to stereoelectronic effects as well.

Another aspect of the behavior of 22 was tested with primary alcohols (Table V). We wished to determine how

⁽²⁹⁾ Tokles, M.; Snyder, J. K. Tetrahedron Lett. 1988, 29, 6063.

⁽³⁰⁾ The purity of benzoin has always been measured by polarimetry.

⁽³¹⁾ The purity of this keto alcohol was previously analyzed through its MTPA derivative: Mashraqui, S. H.; Kellog, R. M. J. Org. Chem. 1984, 49, 2513.

Table III. Evaluation of Reagent 22 with Various Secondary Alcohols

	alcohol			δ (ppm) of PIII	(ppm) of δ (ppm) of PIII thio					enantiomeric excess %		
entry	structure	R	no.	derivativea	no.	$\Delta \delta$ (ppm)	$derivative^a$	no.	$\Delta \delta$ (ppm)	by 22	by other means	
1		Et	11	139.387 and 135.685	11 Pb	3.702 ^b	86.474 and 86.205	11PSb	0.269			
2		nHex	(S)-1 2	139.724 and <u>135.551</u>	1 2P	4.173 ^b	86.205 and <u>85.936</u>	12 PS	0.269	91.4 ≥98	89.0, ^c 92.4, ^d 93.0, ^e 98.0 ^c	
3		Ph	24	136.695 and 134.945	24P	1.750 ^{/-h}	87.167 and 86.763	24PS	0.404			
4		CH=CH ₂	25	137.435 and 136.897	25P	0.538 ^m	86.542 and 86.272	25PS	0.270			
5			(<i>S</i>)-15	<u>144.234</u> and 135.282	15 P	8.952	86.904 and 85.948	15 PS	0.956	44.8	42.0, ⁱ 44.2 ^e	
6			18 ^j	139.070 and 136.224	18 P	4.846	84.590 and 83.719	18 PS	0.871			
7			(-)-26	<u>142.954</u> and 136.995	26 P	6.259 ^{k,l}	<u>86.107</u> and 85.703	26PS	0.404	81.2 96.6	82.3, ^c 79.04, ^d 98.0 ^c	
8			(+)-27	142.349 and <u>136.157</u>	27P	6.192	86.206 and <u>85.600</u>	27PS	0.606	100	100 (commercial product)	
9	Å.		(-)-28	<u>139.993</u> and 130.301	28P	9.692	87.753 and 87.100	28PS	0.673	≥98	100 (commercial product)	
10	OH Pent * SiM	6 3	17	147.061 and 130.840	17 P	16.221	see text	17 PS				
11	ОН	1	29	140.397 and 137.301	29P	3.0 9 6	86.676 and 86.272	29PS	0.404			
12		CH2CH2- OH	30	see text								
13	n	COOEt	(<i>S</i>)-31	137.368 and <u>134.003</u>	31P	3.365	87.686 and <u>87.349</u>	31 PS	0.337	35 100	34.9, ⁱ 37.6, ^d 100 (commercial product)	
14		CO-Ph	(S) -32	135.272 and <u>131.513</u>	32P	2.759	87.484 and <u>87.147</u>	32PS	0.337	≥96	100 (commercial product)	
15		CHCl ₂	33	143.964 and 131.782	33P	12.182	87.686 and 86.676	33PS	1.010			
16		CH₂CO- Ph	34	139.657 and 134.071	34P	5.586	86.004 and 85.600	34PS	0.404			
17	HO Me Ph NMe ₂		(+)-35	143.089 and 131.647	35P	11.442	87.551 and 86.205	35PS	1.346	100	100 (commercial product)	

^aTaken in C_6D_6 ; the underlined values are those of the major enantiomer. ^bSee Table I for comparative data with literature reports. ^cArtificial mixture made by weighting each enantiomer or a pure enantiomer with the racemic material. ^dDetermined from MTPA derivative. ^eDetermined by GC analysis of the sulfurated deriv. PS (see text). ^fReference 12b: 0.432 ppm. ^gReference 12c: 0.938 ppm. ^hReference 12a: 0.321 ppm. ⁱDetermined by polarimetry. ^jRacemic material; relative stereochemistry shown. ^kReference 15: 0.137 ppm. ^lReference 12a: 0.568 ppm. ^mReference 12a: 0.247 ppm.

Table IV. Evaluation of Reagent 22 with Various	Tertiary Alcohols
---	-------------------

	alo	cohol		δ (ppm) of the P ^{III}			δ (ppm) of the sulfurated		Δδ (ppm)
entry	structure	R	no.	derivative ^a	no.	$\Delta\delta$ (ppm)	derivative	no.	
1) ∕		19	133.330 and 132.724	1 9P	0.606	79.744	19 PS	0
2		n-Pent	36	136.427	36P	0	79.352	36 PS	0
3	,	Ph	37	138.446 and 136.718	37P	1.728	80.141 and 80.025	37 PS	0.118

^a Taken in C₆D₆.

far the stereogenic center could be from the chiral derivative and still give rise to chemical shift differentiation. Thus, primary alcohols with an α stereogenic center, such as 38 and 39, could be easily differentiated (Table V, en-

Table V. Evaluation of Reagent 22 with Various Primary Alcohols

		_								ena ez	ntiomers cess %
entry	alcoho structure	ol R	no.	δ (ppm) of the P ^{III} derivative ^a	no.	Δδ (ppm)	δ (ppm) of the thio derivative ^a	no.	Δδ (ppm)	by 22	by other means
1	Дон	Et	38	133.262 and 133.060	38P	0.202	87.349	38 PS	0.019		
2	H. * 🍝	Ph	39	134.137 and 133.464	39P	0.673	87.282	39 PS	0.065		
3		nBu	40	136.830 and 136.291	40 P	0.539	87.686	40 PS	0.016		
4		Ph	41	132.522 and 131.782	41 P	0.740	87.215	41 PS	0.054		
5			(S) -42	133.599 and <u>133.061</u>	42P	0.538	87.417	42 PS	0.032		
6	но		43	138.446	43P	0	87.429	43PS	0		
7	о Хо Он		(+)-44	134.003 and <u>133.666</u>	44P	0.337°	87.722	44PS	0.004	76.4	75.1, ^b 76.2 ^d
8	~~.Дон		45 ^e	136.830 and 135.080	45P	1.750	88.427	45PS	0.024		
9	H ₁₅ C7O.F.OH		46	<u>136.292</u> and 135.619	46P	0.673	88.898 and 88.809	46 PS	0.089	78.2	80
10			47	134.205 and 133.869	47P	0.336	87.013 and 86.888	47PS	0.125		
11			48	138.849	48 P [/]	0	88.009	48 PS ^s	0		

^a Taken in C_sD_s; the underlined values are those of the major enantiomer. ^b Artificial mixture made by weighting each enantiomer or a pure enantiomer with the racemic material. "Reference 15:0.000 ppm. "Determined by polarimetry. "Racemic material; relative stereochemistry shown. ^{*i*} Excellent separation of the diastereotopic benzylic hydrogen by ¹H NMR (C_6D_6): 4.86 ppm (d, ³ $J_{PH} = 8.8$ Hz), 4.58 ppm (d, ³ $J_{PH} = 6.6$ Hz). ^{*s*} Very good separation of the diastereotopic benzylic hydrogen by ¹H NMR (CDCl₃): 5.04 ppm (d, ³ $J_{PH} = 12.7$ Hz), 4.99 ppm (d, ³ $J_{PH} = 11$ Hz).

tries 1 and 2). An example, analogous to alcohol 39, was also resolved with phosphorus CDA's 3¹² and 5.¹⁵ Such alcohols can also be resolved by MTPA derivatives with a lanthanide shift reagent.^{10b} More interestingly, a stereogenic center β to the hydroxy group (alcohols 40, 41, and 42) still gives a notable $\Delta \delta$ value (Table V, entries 3-5). (S)-(-)-Citronellol (42) (Table V, entry 5) could, thus, be conveniently evaluated. Its optical purity was previously measured after oxidation to citronellic acid and derivatization with chiral ethyl naphtylamine by high-resolution liquid chromatographic analysis on microparticulate silica column.³³ Another possibility is the oxidation to the corresponding aldehyde whose ee was conveniently measured through chiral aminal formation.^{18c} An α -allenic alcohols such as 47 (Table IV, entry 10), with axial chirality, was also cleanly evaluated with our reagent. Such alcohols usually need a lanthanide shift reagent and a chiral derivatizing agent to be distinguished!³⁴ However, alcohols with a γ stereogenic center, such as alcohol 43 (entry 6), were no longer distinguished. (S)-(+)-Isopropylideneglycerol (44) (Table V, entry 7) is known to be an extremely difficult case.³⁵ Although thio derivative 44PS could not be very clearly resolved, the simple derivative 44P was well separated (see Figure 2B). Finally, α -epoxy alcohols 45 and 46 (Table V, entries 8 and 9), are also distinguished, and the ee of 46,³⁶ obtained through

Sharpless' asymmetric epoxidation, could be accurately measured. The MTPA derivative of epoxide 46 did not give a base line separation. Epoxy alcohols, obtained through Sharpless' asymmetric epoxidation, were usually estimated through either the MTPA derivative or with $Eu(hfc)_3$ shift on the acetate.³⁷ The last example shown in Table V concerns the α -deuterioal cohol 48. The ee of such alcohols could previously be determined with lanthanide shift³⁸ or combination of MTPA derivative and lanthanide shift³⁹ on the α -diastereotopic protons. By ³¹P NMR. it was not possible to observe two differentiated signals. However, by ¹H NMR, the two α -hydrogens of the phosphorus derivative of Ph--CH₂-OH (as they also are on 48) are diastereotopic and very well resolved. As shown in Figure 3, integration of these protons on the deuterated derivatives 48P or 48PS would allow an accurate deter-

⁽³³⁾ Bergot, B. J.; Anderson, R. J.; Schooley, D. A.; Henrick, C. A. J.

⁽³³⁾ Bergot, B. J.; Anderson, R. J., Schooley, D. A., Mehnen, C. H. J.
Chromatogr. 1978, 155, 97.
(34) (a) Claesson, A.; Olsson, L.; Sullivan, G. R.; Mosher, H. S. J. Am.
Chem. Soc. 1975, 97, 2919. (b) Olsson, L.; Claesson, A. Acta Chem.
Scand. 1977, B31, 614. (c) Gooding, O. W.; Beard, C. C.; Jackson, D. Y.;
Wren, D. L.; Cooper, G. F. J. Org. Chem. 1991, 56, 1083.
(35) See, for example: Mukaiyama, T.; Tanabe, Y.; Shimizu, M. Chem.

Lett. 1984, 401.

⁽³⁶⁾ Gosmini, C.; Dubuffet, T.; Sauvêtre, R.; Normant, J. F. Tetra-

⁽³⁶⁾ Gosmini, C.; Dubuffet, T.; Sauvetre, K.; Normant, J. F. Tetra-hedron: Asymmetry 1991, 2, 223.
(37) (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974. (b) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765. (c) Pelter, A.; Ward, R. S.; Little, G. M. J. Chem. Soc., Perkin Trans 1 1990, 2775.
(28) (c) Carloth, H.; Zengleh, B. J. Chem. Soc. Computer 1970.

 ^{(38) (}a) Gerlach, H.; Zagalak, B. J. Chem. Soc., 1ernit Trains 7, 1936, 2173.
 (38) (a) Gerlach, H.; Zagalak, B. J. Chem. Soc., Chem. Commun. 1973, 274.
 (b) Schwab, J. M. J. Am. Chem. Soc., 1981, 103, 1876.
 (c) Parker, D. J. J. Chem. Soc., Perkin Trans. 2 1983, 83.
 (39) Reich, C. J.; Sullivan, G. R.; Mosher, H. S. Tetrahedron Lett.

^{1973, 1505.}

Figure 3. ¹H NMR (400 MHz) spectra of the benzylic protons of 48P (A) and 48PS (B).

mination of the optical purity of such alcohols.

Our reagent 22 distinguishes diastereomers as well as enantiomers. Thus, α -keto alcohol 51³⁶ (Chart III) has two stereogenic centers and could be obtained as a racemic mixture (erythro:threo = 85:15) or as enantiomerically pure material. ³¹P NMR clearly shows four singlets corresponding to the racemic material (Figure 4A); the enantiomerically pure product gives one singlet for each diastereoisomer (Figure 4B). Compound 51 was also analyzed through its MTPA derivative; only ¹H NMR (400 MHz) could distinguish partially the four signals of the -CH-(OH)- (Figure 4C and D). In a similar manner, it was possible to analyze the even more sensitive alcohol 52³⁶ (Chart III).

Figure 4. (A) ³¹P NMR (36.22 MHz) spectrum of racemic 51P. (B) Same spectrum of optically pure 51P. (C) Part of the ¹H NMR (400 MHz) spectrum of MTPA derivative of racemic 51. (D) Same ¹H NMR (400 MHz) spectrum of optically pure 51.

Epoxy alcohol 53 also possesses several stereogenic centers (Chart III). Epoxidation of the corresponding racemic (*E*)-allylic alcohol with *m*-CPBA gave a 2:1 mixture of erythro and threo diastereoisomers. Analysis of this material with reagent 22 gave the racemic mixture 53P, which displays fours distinct signals (Figure 5). The optically and diastereomerically pure material could be obtained through Sharpless' epoxidation.⁴⁰ The ³¹P NMR spectrum of its derivative 53P shows only one singlet. The

⁽⁴⁰⁾ Kitano, Y.; Matsumoto, T.; Sato, F. J. Chem. Soc., Chem. Commun. 1986, 1323.

Figure 5. (A) ³¹P NMR (36.22 MHz) spectrum of racemic erythro and three 53P. (B) Same spectrum of optically pure erythro 53P.

optical purity of this epoxy alcohol was previously analyzed as the corresponding acetate with $Eu(dppm)_3$.⁴¹

Reagent 22 is not restricted to the analysis of the optical purity of alcohols. We have also briefly examined its applicability to *thiols*.⁴² Thus, secondary thiol 54 (Scheme VII) reacted easily under the usual conditions to afford derivatives 54P. Again, the spectrum displays an excellent separation of the signals ($\Delta \delta = 1.817$ ppm). This derivative could also be converted to derivative 54PS and, again, the two signals are very well separated ($\Delta \delta = 0.740$ ppm). The primary chiral thiol 55 was also clearly resolved ($\Delta \delta = 0.468$ ppm for 55P and $\Delta \delta = 0.0646$ ppm for 55PS).

In most of the examples shown up to now, we have also done the ¹H and ¹³C NMR spectra. In almost every case it was possible to find signals allowing clean integration of the diastereomeric pair and thus to confirm the values of ee measured by ³¹P NMR spectroscopy. Quite often, the phosphorus moiety induces strong differences in the diastereotopic protons in the molecule. However, care should be taken on the duplication of signals owing to the strong coupling with the phosphorus atom.

One of the attractive features of the MTPA derivatives is the possibility of complementary analyses by GC or HPLC.¹ In our case, the thio derivatives 12PS-54PS are stable enough to be also analyzed by these analytical techniques. Thus, derivatives 11PS, 12PS, 14PO, 15PS, 16PO, 17PO, 18PS, 24PS, 25PS, 27PS, 28PS, 29PS 33PS, 41PS, 42PS, 44PS, and 47PS were subjected to GC analysis on a capillary glass column (SE 30, 25 m). Among the thio derivatives tested, 11PS, 12PS, 14PO, 15PS, 16PO, 18PS, 24PS, 25PS, 28PS, and 33PS gave clean base line separation (see Figure 6): 27PS, 29PS and 42PS were partially resolved; 17PO, 41PS, and 44PS were not separated at all; and 47PS decomposed. Perhaps different kinds of stationary phases could be more efficient, but no attempt was made to check this point. Some other derivatives were of too high molecular weight for GC analysis. HPLC is not subject to such restrictions, and compounds 27PS, 28PS, and 33PS were also analyzed by this technique (Prolabo SIL 1 S5 W, 15 cm × 4.6 mm column). Clean base line separation was obtained with the two first

Figure 6. GC analyses of racemic 12PS (A) and 25PS (B).

derivatives. Although we were less successful with HPLC than with GC, these analytical methods are complementary. They offer, in fact, one more confirmation of the NMR measurements.

Conclusions

This survey of various CDAs' based on phosphorus derivatives of our previously described chiral diamines, with a C_2 axis of symmetry, shows that the trivalent phosphorous heterocycle 22 is an extremely powerful reagent for the determination of the enantiomeric purity of alcohols and thiols. After derivatization with this reagent two different measurements may be performed by ³¹P NMR spectroscopy. Complementary analyses may be done by ¹H and ¹³C NMR spectroscopy and also by chromatographic techniques.

Thus, various secondary alcohols have been analyzed successfully. Hindered secondary and tertiary alcohols react normally with reagent 22 without any kinetic discrimination. On the other hand, many functionalities are tolerated (epoxides, halides, amines, esters, ketones); neither epimerization of enolizable positions nor β -elimination have been observed thus far. The only limitations encountered to date concern propargylic alcohols (however, reagent 8 allows such an analysis) and 1,2- or 1,3-diols which cyclize with opening of the diazaphospholidine ring. Various chiral primary alcohols having an α or β stereogenic center, and even axial chirality in all allenic alcohol, could be efficiently distinguished. Extension of this study to other functional groups, as well as to the determination of absolute configuration of chiral alcohols are presently under way.

Experimental Section

³¹P NMR spectra were recorded at 36.22 MHz on a JEOL FX 90 instrument and ¹H and ¹³C NMR spectra on a Brucker AC 200 or Jeol GSX 400 instruments. Chemical shifts are expressed with TMS as internal standard or H_3PO_4 as external standard. Values in italic correspond to the second diastereomer (or the minor one) when it is clearly distinct. GC analyses were performed on a capillary quartz column (SE 20, 25 m, \oslash 0.32 mm) and H_2 as gas vector. HPLC analyses were performed using a UV (λ = 220 mm)

⁽⁴¹⁾ Kitano, Y.; Matsumoto, T.; Sato, F. Tetrahedron 1988, 44, 4073. (42) For the determination of the optical purity of thiols, see: Strijtveen, B.; Feringa, B. L.; Kellog, R. M. Tetrahedron 1987, 43, 123 and references cited therein.

⁽⁴³⁾ We thank Dr. F. Marcinac (Rhône-Poulenc, Centre de Recherche des Carrières, Lyon) for the HPLC analyses.

Optical Purity of Alcohols and Thiols

detector and Prolabo SIL 1 S5 W (15 cm × 4.6 mm) column; flow rate 0.8 mL/min; eluent, heptane/diisopropyl ether = 95/5.

Synthesis of Chiral Diamines. The preparation of N, N'dimethyl-1,2-diphenylethylene-1,2-diamine,44,45 N,N'-dimethyl-1,2-[bis(m-trifluoromethyl)phenyl]ethylene-1,2-diamine,^{18c} and N,N'-diisopropyl-1,2-diphenylethylene-1,2-diamine⁴⁴ was already described by us.

(R,R)-N,N'-Dimethylcyclohexane-1,2-diamine.⁴⁶ A solution of commercial (Fluka) (R,R)-(-)-cyclohexane-1,2-diamine (34.2 g, 0.3 mmol) in toluene (450 mL) is stirred and cooled at 0 °C, as ethyl chloroformate (71 g, 0.72 mol) and NaOH (28.8 g, 0.72 mol) dissolved in water (30 mL) are added simultaneously through different addition funnels. The addition rate is adjusted to maintain the reaction temperature between 0 and 10 °C. When this addition is over, the mixture is stirred at rt for 3 h, then the heavy precipitate is filtered off and rinsed once with CH_2Cl_2 (250 mL). The filtrate is dried on MgSO₄ and concentrated in vacuo. The residue is recrystallized in CH₂Cl₂ containing the minimum amount of pentane. The dicarbamate is obtained as white crystals in 87% yield. To a solution of LiAlH₄ (16.7 g, 0.44 mol) in THF (700 mL) is slowly added, at rt, the above dicarbamate (28.2 g, 0.11 mol). After the addition is over, the mixture is heated at reflux for 36 h. This mixture is cooled, ethylenediamine (40 mL) is slowly added, then, a 15% aqueous solution of NaOH (19 mL), and finally water (39 mL) are added. The precipitate is removed through Celite, and the filtrate is concentrated in vacuo. The residue is diluted with 250 mL of Et₂O, filtered again if needed, dried over Na₂SO₄, and concentrated. After vacuum distillation, through a 10-cm Vigreux column, the colorless diamine is obtained in 84% yield: bp 78–80 °C (18 mm); $[\alpha]^{20}_{D}$ –145.7° (c 4.47; CHCl₃); ¹³C NMR (CDCl₃) δ 25.2 (NHCH₃), 31.0 (NCHCH₂CH₂CH₂C H₂CHN), 33.7 (NCHCH₂CH₂CH₂CH₂CH₂CHN), 63.4 (NHCH).

(R,R)-N,N'-Diisopropylcyclohexane-1,2-diamine.⁴⁷ solution of commercial (Fluka) (R,R)-(-)-cyclohexane-1,2-diamine (2 g, 17.6 mmol) and acetone (5.1 g, 88 mmol) in EtOH (60 mL) are hydrogenated, at atmospheric pressure, in the presence of PtO₂ (100 mg) as catalyst. After the absorption of the theoretical amount of H_2 , the catalyst is separated by filtration on Celite and the solvent is removed in vacuo. Distillation of the residue affords the pure diamine in 98% yield: bp 116 °C (18 mm); $[\alpha]^{20}_{D}$ -125.2° (c 9.64; CHCl₃); ¹H NMR (CDCl₃) δ 0.95 (d, 6 H, ²J_{HH} = 6.1 Hz, NCH(CH₃)₂), 1.05 (d, 6 H, ${}^{2}J_{HH} = 6.2$ Hz, NCH(CH₃)₂), 1.1–1.25 (m, 4 H, NCHCH₂CH₂CH₂CH₂CH₂CH₂CHN), 1.5–1.8 (m, 4 H, NCHCH₂CH₂CH₂CH₂CHN), 1.9–2.2 (m, 2 H, NCH(CH₃)₂), 2.8 $(m, 2 H, NCHCH_2).$

Synthesis of Phosphorus CDA's 7, 8, 9, 9S, and 10. To a solution of the appropriate chiral diamine (26.8 mmol) in toluene (50 mL) is added NEt₃ (5.5 g, 53.6 mmol). To this ice-cooled solution is slowly added POCl₃ (4.1 g, 26.8 mmol) or PSCl₃ (4.53 g, 26.8 mmol). The mixture is refluxed for 4 h, and then the salts are filtered off and the solvent evaporated under vacuum. The residue is purified; 7 and 8 are distilled, 9 is flash chromatographied on silica gel, 10 is recrystallized in cold Et₂O, and 9S was used crude. CDA's 9, 9S, and 10 were not used in optically pure form.

Phosphoramide 7: Yield = 74.6%; bp 180 °C (0.5 mm); $[\alpha]^{20}$ _D -45.6° (c 5.7; CH₂Cl₂); ³¹P NMR (CDCl₃) δ 27.7; ¹H NMR (CDCl₃) δ 1.24 (d, 3 H, ³J_{HH} = 4.4 Hz, PNCHCH₃), 1.28 (d, 3 H, ³J_{HH} = 4.4 Hz, PNCHCH₃), 1.3–1.48 (m, 8 H, PNCHCH₃), 1.75–2.18 (m, 4 H, NCHCH₂ $CH_2CH_2CH_2CH_2$ CHN), 2.85-3.12 (m, 4 H, NCHCH₂CH₂CH₂CH₂CHN), 3.4-3.75 (m, 2 H, PNCH).

Phosphoramide 8: yield = 90%; bp 125–135 °C (0.2 mm); mp 70 °C; $[\alpha]^{20}_D - 57.5^\circ$ (c 5.7; CH₂Cl₂); IR (KBr) 1280 cm⁻¹; ³¹P NMR (C₆D₆) δ 26.9; ³¹P NMR (CDCl₃) δ 30.3; ¹H NMR (CDCl₃) δ 1.08–1.52 (m, 4 H, NCHCH₂CH₂CH₂CH₂CH₂CHN), 1.77–2.15 (m, 4 H, NCHCH2CH2CH2CH2CHN), 2.45-2.77 (m, 7 H, PNCH3 and PNCH), 2.87 (m, 1 H, PNCH); ¹³C NMR (CDCl₃) § 12.23, 14.21 (NCHCH₂CH₂CH₂CH₂CHN), 27.00 (d, ${}^{3}J_{PC} = 12.7$ Hz, NCHCH₂CH₂CH₂CH₂CHN), 27.69 (s, NCHCH₂CH₂CH₂CH₂CH₂CHN), 27.86 (s, PNCH₃), 28.25 (s, PNCH₃), 62.24 (d, ${}^{2}J_{PC} = 10.0$ Hz, PNCH), 63.80 (d, ${}^{2}J_{PC} = 10.1$ Hz, PNCH). Anal. Calcd for C₈H₁₆ClN₂OP: C, 43.15; H, 7.19; N, 12.58; P, 13.93; Cl, 15.96. Example C, 42.21; H, 7.10; N, 12.55; P, 13.61; C, 12.11; H, 7.19; N, 12.56; P, 13.61; Cl, 12.11; H, 7.19; N, 12.56; P, 13.61; L, 15.61; Found: C, 43.21; H, 7.10; N, 12.58; P, 13.50; Cl, 16.11.

Phosphoramide 9: eluent, cyclohexane/ $Et_2O = 90/10$; yield = 92%; 31 P NMR (CDCl₃) δ 29.3; 1 H NMR (CDCl₃) δ 2.45 (d, 3 = 92%; ³⁻P MMR (CDCl₃) δ 29.3; ⁻H MMR (CDCl₃) δ 2.45 (d, 3 H, ³J_{HP} = 14.3 Hz, PNCH₃), 2.6 (d, 3 H, ³J_{HP} = 10.5 Hz, PNCH₃), 3.85 (dd, 1 H, ²J_{HH} = 8.5 Hz, ³J_{HP} = 4.3 Hz, PNCH), 4.15 (d, 1 H, ²J_{HH} = 8.5 Hz, PNCH), 7.2–7.38 (m, 10 H, H Ar); ¹³C NMR (CDCl₃) δ 29.5 (d, ²J_{CP} = 5.3 Hz, PNCH₃), 30.2 (d, ²J_{CP} = 2.6 Hz, PNCH₃), 70.2 (d, ²J_{CP} = 12 Hz, PNCH), 71 (d, ²J_{CP} = 12 Hz, PNCH), 127.9, 128, 128.8, 128.9, 129 (C Ar), 136 (d, ³J_{CP} = 12.8 Hz, C quat), and 137 (d, ³J_{CP} = 5.5 Hz, C quat). Thionbosphoremide 95: yield = 100% ³¹P NMR (CDCl₃)

Thiophosphoramide 9S: yield = 100%; ³¹P NMR (CDCl₃) δ 85.2; ¹H NMR (CDCl₃) δ 2.48 (d, 3 H, ³J_{HP} = 17.5 Hz, PNCH₃), 2.62 (d, 3 H, ³J_{HP} = 13.1 Hz, PNCH₃), 3.93 (dd, 1 H, ³J_{HH} = 9 Hz, ³J_{HP} = 2.1 Hz, PNCH), 4.16 (dd, 1 H, ³J_{HH} = 9 Hz, ³J_{HP} = 5.2 Hz, PNCH), 6.95–7.35 (m, 10 H, H Ar); ¹³C NMR (CDCl₃) δ $30.95 (d, {}^{2}J_{CP} = 4.8 Hz, PNCH_{3}), 31.28 (s, PNCH_{3}), 72.95 (d, {}^{2}J_{CP}$ = 5.7 Hz, PNCH₃), 73.95 (d, ${}^{2}J_{CP}$ = 6.3 Hz, PNCH), 128.95, 129.28, 129.62, 129.72, 129.95, 130.01 (C Ar), 135.95 (d, ${}^{3}J_{CP}$ = 13.6 Hz,

C quat), 136.95 (d, ${}^{3}J_{CP} = 4.3$ Hz, C quat). **Phosphoramide** 10: yield = 56%; ${}^{31}P$ NMR (CDCl₃) δ 29.6; ¹⁹F NMR (CDCl₃) δ -63.35 (s, CF₃), -63.46 (s, CF₃); ¹H NMR (CDCl₃) δ 2.48 (d, 3 H, ${}^{3}J_{HP}$ = 14.3 Hz, PNCH₃), 2.63 (d, 3 H, ${}^{3}J_{HP}$ = 10.3 Hz, PNCH₃), 3.86 (d, 1 H, ${}^{3}J_{HH}$ = 10.5 Hz, PNCH), 4.17 $(dd, 1 H, {}^{3}J_{HH} = 8.5 Hz, {}^{3}J_{HP} = 3.9 Hz, PNCH), 7.15-7.7 (m, 8)$ H, H Ar).

Synthesis of Phosphorus CDA's 20, 21, and 22. The appropriate chiral diamine (28.35 mmol) and hexamethylphosphorous triamide (5.78 g, 35.43 mmol) are heated neat at 150 °C for 96 h. A slow stream of N_2 is passed through the flask in order to remove the formed dimethylamine. The reaction may be followed by ³¹P NMR or by checking that no more dimethylamine is evolved. Excess of $P(NMe_2)_3$ is removed under pump vacuum (0.05 mm), and the desired product is directly distilled (21 and 22) at the same pressure. However, CDA 20 could not be distilled or chromatographed and was used crude. These compounds are very sensitive to moisture. They are stored in benzene (or C₆D₆) or toluene solution under Ar at 4 °C and kept unalterated at least for 3-6 months. Only CDA 22 was prepared in optically purè form.

Diazaphospholidine 20: yield = 100%; ³¹P NMR (CDCl₃) δ 124.5; ¹H NMR (CDCl₃) δ 2.24 (d, 3 H, ³J_{HP} = 12.4 Hz, NCH₃), 2.43 (d, 3 H, ${}^{3}J_{HP} = 7.7$ Hz, NCH₃), 2.85 (d, 6 H, ${}^{3}J_{HP} = 7.6$ Hz, 2.43 (d, 3 H, ${}^{5}J_{HP} = 7.7$ Hz, NCH₃), 2.85 (d, 6 H, ${}^{5}J_{HP} = 7.6$ Hz, N(CH₃)₂), 3.69 (d, 1 H, ${}^{3}J_{HH} = 8.5$ Hz, CHC₆H₅), 4.14 (dd, 1 H, ${}^{3}J_{HH} = 9.1$ Hz, ${}^{3}J_{HP} = 2.5$ Hz, CHC₆H₅), 7.03–7.25 (m, 10 H, H Ar); ${}^{13}C$ NMR (CDCl₃) δ 30.89 (d, ${}^{2}J_{CP} = 9.9$ Hz, NCH₃), 34.37 (d, ${}^{2}J_{CP} = 34.6$ Hz, NCH₃), 37.88 (d, ${}^{2}J_{CP} = 17.7$ Hz, N(CH₃)₂), 76.07 (d, ${}^{2}J_{CP} = 10$ Hz, CHN), 76.84 (d, ${}^{2}J_{CP} = 4.9$ Hz, CHN), 128.43, 128.22, 128.17, 127.94, 127.55, 127.44 (C Ar), 139.98 (s, C quat), 140.37 (d, ${}^{3}J_{CP} = 6.4$ Hz, C quat).

Diazaphospholidine 21: yield = 86%; bp 95-100 °C (0.4 mm); ³¹P NMR (CDCl₃) δ 99.1; ¹H NMR (CDCl₃) δ 0.85–1.45 (m, 16 H, (CH₃)₂CH and CH₂CH₂CH), 1.64-1.88 (m, 2 H, CH₂CHN), 1.93-2.18 (m, 2 H, CH₂CHN), 2.4 and 2.75 (m, 7 H, N(CH₃)₂ and $CH(CH_3)_2$), 2.85–3 (m, 1 H, $CH(CH_3)_2$), 3.2–3.5 (m, 2 H, CHNP). Diazaphospholidine 22:^{46b} yield = 85%; bp 59–61 °C (0.5

mm); $[\alpha]^{25}_{D}$ -100.4° (c 2.7; C₆H₆); ³¹P NMR (C₆D₆) δ 122.5; ¹H NMR (C₆D₆) δ 0.95–1.15 (m, 4 H, NCHCH₂CH₂CH₂CH₂CH₂CHN), 1.55–1.65 (m, 2 H, NCHCH₂CH₂CH₂CH₂CHN), 1.83–1.93 (m, 2 H, NCHCH₂CH₂CH₂CH₂CHN), 2.2-2.72 (m, 14 H, NCHCH₂C-H₂CH₂CH₂ČHN, PNCH₃, and PN(CH₃)₂); ¹³C NMR (C₆D₆) δ 25.16, 25.32, 30.32, 30.58 (NCHCH₂CH₂CH₂CH₂CHN), 33.82 (s, PNCH₃), 34.54 (s, PNCH₃), 38.60 (d, ${}^{2}J_{CP} = 17.6$ Hz, PN(CH₃)₂), 67.34 (d, ${}^{2}J_{CP}$ = 8.9 Hz, PNCH), 69.43 (d, ${}^{2}J_{CP}$ = 3.5 Hz, PNCH). Elemental analysis could not be performed on compound 22, neither could high-resolution mass spectroscopy. CDA 22 was therefore sulfurated to 22S, and high-resolution spectrum could be obtained: for $C_{10}H_{22}N_3PS$ calcd 247.1272, found 247.1265.48

⁽⁴⁴⁾ Mangeney, P.; Tejero, T.; Alexakis, A.; Grojean, F.; Normant, J. F. Synthesis 1988, 255.

 ⁽⁴⁵⁾ Mangeney, P.; Alexakis, A.; Grojean, F.; Normant, J. F. Tetrahedron Lett. 1988, 29, 2675.
 (46) (a) Fiorini, M.; Giongo, G. M. J. Mol. Catal. 1979, 5, 303. (b) Hanessian, S.; Delorme, D.; Beaudouin, S.; Leblanc, Y. J. Am. Chem. Soc. 1984, 106, 5754.

⁽⁴⁷⁾ Shepherd, R. G.; Wilkinson, R. G. J. Med. Pharm. Chem. 1962, 5.823.

⁽⁴⁸⁾ We thank Dr. P.-H. Lambert (Institut de Recherche Servier, Paris) for the high-resolution mass spectrum.

This thio derivative 22S discloses the following data: bp 130-135 °C (0.05 mm); yield = 92%; ³¹P NMR (C_6D_6) δ 83.5; ¹H NMR (C₆D₆) δ 0.82-1.12 (m, 4 H, NCHCH₂CH₂CH₂CH₂CH₂CH), 1.44-1.72 (m, 4 H, NCHCH₂CH₂CH₂CH₂CH₂CHN), 2.25–2.47 (m, 8 H, NCH-CH₂CH₂CH₂CH₂CH₂CH₂CHN), 2.25–2.47 (m, 8 H, NCH-CH₂CH₂CH₂CH₂CHN and PNCH₃), 2.65 (d, 6 H, ³J_{HP} = 10.8 Hz, PN(CH₃)₂); ¹³C NMR (C₆D₆) δ 24.96 (s, NCHCH₂CH₂CH₂CH₂CHN), 27.75 (d, ²J_{CP} = 4.7 Hz, PNCH₃), $\begin{array}{l} \text{NOIGH}_2\text{CH}_$

Procedure for Derivatization with Pentavalent Phosphorus CDA's 8, 9, 9S, and 10. The required alcohol (0.3 mmol) is added to a suspension of NaH (0.33 mmol) in THF (5 mL). The mixture is stirred for 0.5 h at rt, then the selected CDA 7, 8, 9, 9S, or 10 (0.33 mmol) is added, and refluxing is started. After 2 h, aqueous NH₄Cl (5 mL) is added, the water phase is extracted $(2 \times 10 \text{ mL})$, and the organic extracts are dried over Na₂SO₄. The solvents are evaporated in vacuo, and the residue is transferred into the NMR tube. For GC and HPLC analyses, the contents of the NMR tube are used directly. In some cases, elemental analyses were performed, although such analyses were not systematically done, due to the analytical nature of this study.

Procedure for Derivatization with Trivalent Phosphorus CDA 22. Into a flame-dried small (5-mL) flask, under a stream of Ar, is placed CDA 22 (550 μ L of a 0.2 M solution in C₆H₆; 0.11 mmol). The alcohol to be analyzed (0.1 mmol) is added and stirring is continued (2-15 h) until no more Me₂NH is evolved (check with humid pH paper). A more careful control may be done by taking an aliquot and adding it to a suspension of sulfur (S_8) in Et₂O (1 mL). A GC or TLC analysis indicates if any starting alcohol is left. When the reaction is over, the contents of the flask are transferred into an NMR tube and 100 μ L of C₆D₆ is added for locking. Once the first ³¹P NMR analysis is done, sulfur (S₈, 10 mg, 0.04 mmol) is added at once. The thio derivative is formed instantaneously, and a new ³¹P NMR analysis is done. ¹H and ¹³C NMR spectra could also be recorded, although this was not done on all the alcohols. For GC and HPLC analyses, the contents of the NMR tube (after reaction with sulfur) is purified on a preparative TLC, mainly to remove excess sulfur. In most cases the eluent is cyclohexane/EtOAc = 95/5.

Derivatives of Table I. Derivative 11POb: ³¹P NMR (CDCl₃) δ 24.393 and 24.056 ($\Delta \delta$ = 0.337).

Derivative 11POc: eluent, cyclohexane/ $Et_2O = 50/50$; yield = 92%; ³¹P NMR (C₆D₆) δ 24.701 and 24.226 ($\Delta \delta$ = 0.475); ¹H NMR (CDCl₃) δ 1.05 (m, 3 H, CH₂CH₃), 1.4 (m, 3 H, CHCH₃), 1.72 (m, 2 H, CHCH₂CH₃), 2.48 (m, 6 H, PNCH₃), 3.85 (2 H, PNCH), 4.55 (m, 1 H, POCH), 6.9-7.2 (m, 10 H, H År); ¹³C NMR (CDCl₃) § 9.70, 9.80 (CH₂CH₃), 21.58, 21.66, 21.75, 21.80 (CHCH₃), 29.97, 30.02, 30.10, 30.15, 30.63, 30.76, 30.82, 30.88 (CHCH₂CH₃) and PNCH₃), 70.62, 70.66, 70.85, 70.89, 71.43, 71.45, 71.68 (PNCH), 75.10, 75.25, 75.56, 75.72 (POCH), 127.63, 127.66, 127.99, 128.07, 128.21, 128.46, 128.51 (C Ar), 137.90, 138.10, 138.82, 138.85, 138.96 (C Ar).

Derivative 11PSc: eluent, cyclohexane/AcOEt = 95/5; yield = 80%; bp 170 °C (0.1 mm); ³¹P NMR (C_6D_6) δ 82.448 and 82.111 $(\Delta \delta = 0.337)$; ¹H NMR (CDCl₃) δ 1.01 (t, 3 H, ³J_{HH} = 7.5 Hz, CH_2CH_3), and 1.03 (t, 3 H, ${}^3J_{HH} = 7.5$ Hz, CH_2CH_3), 1.36 (m, 3 H, CHCH₃), 1.72 (m, 2 H, CHCH₂CH₃), 2.45 (m, 6 H, PNCH₃), 3.9-4.06 (m, 2 H, PNCH), 4.62 (m, 1 H, POCH), 7.06-7.30 (m, 10 H, H Ar); ¹³C NMR (CDCl₃) δ 9.78 (s, CH₂CH₃), 21.17, 21.28, 21.48 (CHCH₃), 29.49, 29.55, 29.72, 29.77 (PNCH₃), 30.30, 30.42, 30.49 (OCHCH₂), 31.54, 31.65, 31.74 (PNCH₃), 71.32, 71.46, 73.00, 73.12, 73.26 (PNCH), 76.16, 76.32, 76.84, 76.99 (POCH), 127.62, 128.04, 128.09, 128.22, 128.50, 137.72, 137.92, 138.67, 138.81 (C Ar). Anal. Calcd for $C_{20}H_{27}N_2$ OPS: C, 64.17; H, 7.22; N, 7.49. Found: C, 63.98; H, 7.27; N, 7.43.

Derivative 11POd: eluent, cyclohexane/Et₂O = 50/50; yield = 85%; ³¹P NMR (C₆D₆) δ 24.230 and 23.691 ($\Delta \delta$ = 0.539); ¹⁹F NMR (C_6D_6) δ -62.54 (s, CF_3) and -62.66 (s, CF_3); ¹H NMR (C_6D_6) δ 0.7 (m, 3 H, CH₂CH₃), 1.05 (m, 3 H, CHCH₃), 1.3 (m, 2 H, CH₂CH₃), 1.93 (m, 6 H, PNCH₃), 3.35 (m, 2 H, PNCH), 4.4 (m, 1 H, POCH), 6.5-7.15 (m, 8 H, H Ar).

Derivative 12PO: eluent, cyclohexane/Et₂O = 50/50; yield

= 87%; ³¹P NMR (C_6D_6) δ 24.768 and 24.282 ($\Delta\delta$ = 0.486). Derivative 13PO: ³¹P NMR (CDCl₃) δ 24.634 and 23.998 ($\Delta\delta$ = 0.636).

Derivative 14PO: colorless oil; eluent, $Et_2O/CH_2Cl_2 = 80/20$; yield = 97%; ³¹P NMR (CDCl₃) δ 23.422 and 22.749 ($\Delta \delta$ = 0.673); Η, 1H NMR $(CDCl_3)$ 0.55 - 0.754 δ (m. NCHCH₂CH₂CH₂CH₂CH₂CHN), 1.00-1.38 (m, 7 H, NCHCH₂CH₂CH H₂CH₂CHN and CHCH₃), 2.02-2.3 (m, 9 H, PNCH₃, PNCH, and C = CH, 5.1 (m, 1 H, POCH); ¹³C NMR ($C_6 D_6$) δ 23.49 (d, ³ J_{CP} = 6.9 Hz, CHCH₃) and 24.10 (d, ${}^{3}J_{CP}$ = 3.8 Hz, CHCH₃), 24.44 (s, NCHCH2CH2CH2CH2CHN), 28.16, 28.28, 28.38, 28.50, 29.54, 30.12, 30.75 (NCHCH2CH2CH2CH2CH2CHN and PNCH3), 62.61, 62.74, 63.13, 63.25, 63.33, 64.48, 64.59, 64.68, 64.77 (PNCH and POCH), 73.46 (C=CH) and 84.26, 84.41 (C=CH); GC analysis 160 °C, ret. time 30.0 and 30.6 min.

Derivative 15PO: eluent, cyclohexane/ $Et_2O = 50/50$; yield = 85%; ³¹P NMR (C₆D₆) δ 24.903 and 24.338 ($\Delta \delta$ = 0.565).

Derivative 16PO: colorless oil; eluent, $CH_2Cl_2/Et_2O = 20/80$; yield = 93%; IR (neat) 990, 1020, 1250, 2100 cm⁻¹; ³¹P NMR $(CDCl_3) \delta 23.373 \text{ and } 23.437 (\Delta \delta = 0.936); {}^{1}H NMR (CDCl_3) \delta 0.89$ $(t, {}^{3}J_{HH} = 6.4 \text{ Hz}, CH_{2}CH_{3}), 1.1-1.55 \text{ (m, 10 H)}, 1.7-2.05 \text{ (m, 6)}$ H, NCHCH₂CH₂CH₂CH₂CHN and POCHCH₂), 2.4-2.7 (m, 9 H, PNCH₃, PNCH, and C=CH), 5.05 (m, 1 H, POCH).

Derivatives of Table II. Derivative 11Pc: ³¹P NMR (C₆D₆) δ 142.295 and 140.478 (Δδ = 1.81).

Derivative 11PSc: see above.

Derivative 11Pa: ³¹P NMR (C_6D_6) δ 124.109 ($\Delta\delta$ = 0.000). Derivative 11PSa: white crystals; eluent, cyclohexane/AcOEt = 95/5; yield = 70%; bp = 140 °C (0.1 mm); mp = 118.5 °C; ³¹P NMR (C_6D_6) δ 76.726 and 76.592 ($\Delta\delta = 0.134$); ¹H NMR (C_6D_6) δ 0.82-1.84 (m, 28 H), 2.85 (m, 2 H, PNCH), 3.88 (m, 2 H, PNCH(CH₃)₂), 4.78 (m, 1 H, POCH); ¹³C NMR (C₆D₆) δ 10.07 (s, CH₂CH₃), 19.05, 19.70, 19.82, 21.35, 21.44, 21.56, 24.25, 24.40 (CH(CH₃)₂ and CH₃CHO), 24.79, 24.89, 25.00 (CH₂), 31.05, 31.19, 31.29 (CH2), 32.25, 32.44, 32.60 (CH2), 44.89, 44.99, 45.10 (NCH- $(CH_3)_2$), 46.21, 46.33 (NCH(CH₃)₂), 59.84, 59.97 (PNCHCH₂), 61.28, 61.33, 61.45, 61.49 (PNCHCH₂), 76.36, 76.47, 76.60 (POCH).

Derivative 11Pb: ³¹P NMR (C_6D_6) δ 139.387 and 135.685 ($\Delta\delta$ = 3.702

Derivative 11PSb: eluent, cyclohexane/AcOEt = 95/5; yield **Derivative 11** So. elden, cyclassical (C_6D_6) & 86.474 and 86.205 ($\Delta\delta$ = 0.269); ¹H NMR (C_6D_6) & 0.78–1.05 (m, 7 H, NCH- $CH_2CH_2CH_2CH_2CHN$ and CH_2CH_3 , 1.16 (d, 3 H, ${}^{3}J_{HH} = 6.2$ Hz, $CHCH_3$), and 1.19 (d, 3 H, ${}^{3}J_{HH} = 6.2$ Hz, $CHCH_3$), 1.38–1.67 (m, 6 H, NCHCH2CH2CH2CH2CHN and POCHCH2), 2.22-2.58 (m, 8 H, PNCH₃ and PNCH), 4.7 (m, 1 H, POCH); ¹³C NMR (C₆D₆) δ 10.39 (s, OCHCH₂CH₃), 21.85, 21.95 (OCHCH₃), 24.94 (s, NCHCH2CH2CH2CH2CHN), 28.11, 29.03, 29.60, 29.76 (NCHC-H2CH2CH2CH2CHN), 28.95 (PNCH3), 31.07, 31.21, 31.26 (POC-HCH₂), 31.68, 31.77, 31.85 (PNCH₃), 63.51, 63.58, 63.64 (PNCH), 66.62, 66.73, 66.85 (PNCH), 75.99 (d, ${}^{2}J_{CP} = 7.4$ Hz, CHOP) and 76.36 (d, ${}^{2}J_{CP} = 7.4$ Hz, POCH); GC analysis 180 °C, ret. time 14.0 and 14.4 min. Anal. Calcd for $C_{12}H_{25}N_2OPS$: C, 52.13; H, 9.11; N, 10.17; P, 11.20; S, 11.60. Found: C, 52.33; H, 9.41; N, 9.99; P, 11.08; S, 11.49.

Derivatives of Table III. Derivative 11Pb: see above. Derivative 11PSb: see above

Derivative 12P: ³¹P NMR (C_6D_6) δ 139.724 (*R* enantiomer) and 135.551 (S enantiomer) ($\Delta \delta = 4.173$).

Derivative 12PS: colorless oil; eluent, cyclohexane/AcOEt = 95/5; yield = 82%; ³¹P NMR (C₆D₆) δ 86.205 (R enantiomer) and 85.936 (S enantiomer) ($\Delta \delta = 0.269$); ¹H NMR (C₆D₆) 0.78-1.05 (m, 7 H, NCHCH₂CH₂CH₂CH₂CHN and CH₂CH₂CH₃), 1.15-1.73 (m, 17 H), 2.22–2.64 (m, 8 H, PNCH₃ and PNCH), 4.62–4.9 (m, 1 H, POCH); 13 C NMR (C₆D₆) δ 14.76 (s, CH₂CH₃), 22.45, 22.57, 22.60 (CHCH₃), 23.45 (s, CH_2CH_3), 24.98 (s, NCHCH₂CH₂CH₂CH₂CH₂CHN), 26.17, 26.23 (OCHCH₂CH₂CH₂CH₂), 28.85, 29.07, 29.64, 29.80, 30.05 (NCHCH2CH2CH2CH2CH2CHN and OCHCH2CH2CH2), 29.00 (8, PNCH3), 31.74, 31.85, 31.96 (PNCH3), 32.68 (s, CH2CH2CH3), 38.34, 38.40, 38.49 (OCHCH2), 63.52, 63.60 (PNCH), 66.68, 66.80, 66.93 (PNCH), 74.78 (d, ${}^{2}J_{CP} = 7.8$ Hz, POCH), and 75.18 (d, ${}^{2}J_{CP} = 7.4$ Hz, POCH); GC analysis 240 °C, ret. time 8.7 and 9.1 min.

Derivative 24P: ³¹P NMR (C_6D_6) 136.695 and 134.945 ($\Delta\delta$ 1.750).

Derivative 24PS: slighly yellow oil; eluent, cyclohexane/ AcOEt = 95/5; yield = 93%; ³¹P NMR (C₆D₆) δ 87.167 and 86.763 $(\Delta \delta = 0.404)$; ¹H NMR (C₆D₆) $\delta 0.7-1.08$ (m, 4 H, NCHCH₂CH₂CH₂CH₂CHN), 1.3–1.68 (m, 7 H, NCHCH₂CH₂C- H₂CH₂CHN and OCHCH₃), 2.1-2.6 (m, 8 H, PNCH₃ and PNCH), 5.82 (m, 1 H, POCH), 7-7.4 (m, 5 H, H Ar), 144.37 (C quat); GC analysis 230 °C, ret. time 12.6 and 13.6 min.

Derivative 15P: ³¹P NMR (C_6D_6) δ 144.234 (S enantiomer) and 135.282 (R enantiomer) ($\Delta \delta = 8.952$).

Derivative 15PS: colorless oil; eluent, cyclohexane/AcOEt = 90/10; yield = 93%; IR (neat) 980, 1010, 1030, 1170 cm⁻¹; ^{31}P NMR $(C_6D_6) \delta$ 86.904 (S enantiomer) and 85.948 (R enantiomer) $(\Delta \delta = 0.956)$; ¹H NMR (C₆D₆) $\delta 0.7-1.1$ (m, 7 H, CH₂CH₃ and NCHCH₂CH₂CH₂CH₂CH₂CHN), 1.2-2.6 (m, 18 H), 5.5 (m, 1 H, POCH), 6.9-7.45 (m, 5 H, H Ar); ¹³C NMR (C₆D₆) δ 14.11 (s, CH2CH3), 22.78 (s, CH2CH2CH3), 24.37, 24.46 (NCHCH2CH2C- H_2CH_2CHN), 27.93 (s, $CH_2CH_2CH_3$), 28.16, 28.38, 28.96, 29.12 (NCHCH₂CH₂CH₂CH₂CHN), 28.27 (PNCH₃), 30.47 (d, ²J_{CP} = 5.6 Hz, $PNCH_3$) and 30.85 (d, ${}^2J_{CP} = 5.6$ Hz, $PNCH_3$), 38.19 (d, ${}^{3}J_{CP} = 5.4$ Hz, POCHCH₂), and 38.53 (d, ${}^{3}J_{CP} = 8.7$ Hz, POCHCH₂), 63.07, 63.19, 63.30 (PNCH), 65.93, 65.99, 66.13 (PNCH), 79.64 (d, ${}^{2}J_{CP} = 7.7$ Hz, POCH) and 80.11 (d, ${}^{2}J_{CP} =$ 6.1 Hz, POCH), 127.41, 127.79, 127.97, 128.42, 128.62, 142.74, 142.83, 142.97 (C Ar); GC analysis 234 °C, ret. time 14 and 15 min

Derivative 18P: ³¹P NMR (C_6D_6) 139.070 and 136.224 ($\Delta\delta$ = 4.846).

Derivative 18PS: colorless oil; eluent, cyclohexane/AcOEt = 95/5; yield = 90%; ³¹P NMR (C₆D₆) δ 84.590 and 83.719 ($\Delta\delta$ = 0.871); ¹H NMR (C_6D_6) δ 0.75–1.76 (m, 26 H), 2.15–2.75 (m, 8 H, PNCH₃ and PNCH), 4.5 (m, 1 H, POCH); ¹³C NMR (C₆D₆) δ 24.91, 25.00 (NCHCH₂CH₂CH₂CH₂CH₂CHN), 25.48, 26.16, 26.82, 27.05, 27.69 (POCHCH2CH2CH2CH2), 28.79, 29.01, 29.59, 29.70 (NCHCH₂CH₂CH₂CH₂CHN), 28.91, 29.19 (PNCH₃), 29.78 (C(C- $(H_3)_3$ and 30.11 (C(CH₃)₃), 32.00 (d, ${}^2J_{CP} = 5.9$ Hz, PNCH₃) and 32.47 (d, ${}^{2}J_{CP}$ = 4.6 Hz, PNCH₃), 33.52, 33.77 (C(CH₃)₃), 35.46, 37.13 (POCHCH₂), 52.29 (d, ${}^{3}J_{CP} = 8.7$ Hz, POCHCH) and 52.70 (d, ${}^{3}J_{CP} = 7.4$ Hz, POCHCH), 62.68 (d, ${}^{2}J_{CP} = 5.8$ Hz, PNCH) and 63.15 (d, ${}^{2}J_{CP} = 5.4$ Hz, PNCH), 66.99 (d, ${}^{2}J_{CP} = 5.9$ Hz, PNCH) and 68.11 (d, ${}^{2}J_{CP} = 5.2$ Hz, PNCH), 79.94 (d, ${}^{2}J_{CP} = 8.8$ Hz, POCH) and 80.53 (d, ${}^{2}J_{CP} = 8.5$ Hz, POCH); GC analysis 230 °C, ret. time 6.4 and 6.6 min.

Derivative 25P: ³¹P NMR (C_6D_6) δ 137.435 and 136.897 ($\Delta\delta$ = 0.538).

Derivative 25PS: eluent, cyclohexane/AcOEt = 95/5; bp = 110-120 °C (0.1 mm); yield = 89%; ³¹P NMR (C₆D₆) δ 86.542 and 86.272 ($\Delta \delta$ = 0.270); ¹H NMR (C₆D₆) δ 0.8–1.05 (m, 4 H, NCHCH₂CH₂CH₂CH₂CHN), 1.25 (t, 3 H, CHCH₃), 1.3-1.62 (m, 4 H, NCHCH2CH2CH2CH2CH2CHN), 2.22-2.6 (m, 8 H, PNCH3 and PNCH), 4.98 (m, 1 H, CH:CHH), 5.15-5.38 (m, POCH and CH:CHH); 5.8 (m, 1 H, CH:CH₂). GC analysis 180 °C, ret. time 17.0 and 17.4 min. Anal. Calcd for C₁₂H₂₃N₂OPS: C, 52.55; H, 8.39; N, 10.22; P, 11.31; S, 11.68. Found: C, 52.74; H, 8.57; N, 10.22; P, 11.39; S, 11.44.

Derivative 26P: ³¹P NMR (C_6D_6) δ 142.954 (*l*-menthol) and 136.995 (d-menthol) ($\Delta \delta = 6.259$).

Derivative 26PS: colorless oil; eluent, cyclohexane/AcOEt = 95/5; yield = 96%; ³¹P NMR (C_6D_6) δ 86.107 (*l*-menthol) and 85.703 (d-menthol) ($\Delta \delta = 0.404$). *l*-Menthol derivative: ¹H NMR (C₆D₆) δ 0.6–1.85 (m, 24 H), 2.18–2.65 (m, 10 H, PNCH₃, PNCH, POCHCHCH(CH₃)₂, and POCHCH_{ar}H), 4.52 (dtd, 1 H, ${}^{3}J_{HP}$ = 12.4 Hz, ${}^{3}J_{\text{HHax}} = 10.6$ Hz, ${}^{3}J_{\text{HHeq}} = 4.5$ Hz, POCH); ${}^{13}\text{C}$ NMR (C₆D₆) δ 17.06 (s, CHCH₃CH₃), 21.71 (s, CHCH₃CH₃), 22.84 (s, CHCH₃), 23.90 (s, CH₃)₂CHCHCH₂CH₂CHCH₃), 24.97 (s, NCHCH₂CH₂CH₂CH₂CH₂CHN), 26.51 (s, CH(CH₃)₂), 28.87, 29.08, 29.62, 29.79 (PNCH₃ and NCHCH₂CH₂CH₂CH₂CHN), 32.13 (d, ${}^{2}J_{CP} = 8.6$ Hz, PNCH₃), 35.17 (s, CH₂CHCH₂CH₃), 44.48 (s, OCHCH₂), 49.35 (d, ${}^{3}J_{CP} = 6.1$ Hz, CHCH(CH₃)₂), 63.40 (d, ${}^{2}J_{CP}$ = 5.1 Hz, PNCH), 66.93 (d, ${}^{2}J_{CP}$ = 6.0 Hz, CHNP), 78.90 (d, ${}^{2}J_{CP}$ = 7.5 Hz, POCH), 32.22 (s, CH_2CHCH_3).

d-Menthol derivative: ¹H NMR (C_6D_6) δ 0.64–1.64 (m, 24 H), 2.18–2.68 (m, 10 H, PNCH₃, PNCH, POCHCHCH(CH₃)₂, and POCHCH_{ax}H), 4.49 (dq, 1 H, ${}^{3}J_{HP} = {}^{3}J_{HHax} = 10.4$ Hz, ${}^{3}J_{HHeq} = 4.6$ Hz, POCH); ${}^{13}C$ NMR (C₆D₆) δ 16.58 (s, CHCH₃CH₃), 21.76 H_2 CHN), 26.13 (s, CH(CH₃)₂), 28.84, 29.72, 29.88 (NCHCH₂C-H₂CH₂CH₂CH₂CHN), 29.02 (PNCH₃), 31.99 (d, ²J_{CP} = 5.7 Hz, PNCH₃), 32.16 (s, CH₂CHCH₃), 35.08 (s, CH₂CH₂CHCH₃), 44.29 (s, OCHCH₂), 49.47 (d, ${}^{3}J_{CP}$ = 8.8 Hz, CHCH(CH₃)₂), 63.24 (d,

 ${}^{2}J_{CP} = 5.4$ Hz, CHNP), 67.26 (d, ${}^{2}J_{CP} = 5.5$ Hz, CHNP), 78.33 (d, ${}^{2}J_{CP} = 8.2$ Hz, POCH). Derivative 27P: ³¹P NMR (C₆D₆) δ 142.349 (-)-neomenthol

136.157 (+)-neomenthol ($\Delta \delta = 6.192$).

Derivative 27PS: colorless oil; eluent, cyclohexane/AcOEt = 95/5; yield = 87%; ³¹P NMR (C_6D_6) δ 86.206 (-)-neomenthol and 85.600 (+)-neomenthol ($\Delta \delta = 0.606$); ¹H NMR (C₆D₆) $\delta 0.7-1.9$ (m, 25 H), 2.02-2.62 (m, 9 H, PNCH₃, PNCH, and POCHCH_{ar}H), 4.85–5.08 (m, 1 H, POCH); ¹³C NMR (C_6D_6) δ 21.39, 21.60, 21.82, 22.22, 22.88, 23.04 (CHCH₃ and CH(CH₃)₂), 24.96 (s, NCHCH2CH2CH2CH2CHN), 25.67, 26.24 (POCHCHCH2CH2), 26.67, 27.07 (CHCH(CH₃)₂), 28.65, 29.27, 29.47, 29.65 (PNCH₃) and CH₂CHCH₃), 28.89, 29.13, 29.80, 29.95, 30.11 (NCHCH₂C-H₂CH₂CH₂CHN), 32.05, 32.16, 32.27 (PNCH₃), 35.75 (s, CH₂CH₂CHCH₃), 42.01 (s, POCHCH₂), 48.68, 48.81, 48.92, 49.11 (CHCH(CH₃)₂), 63.38, 63.48, 63.59, 63.68 (PNCH), 66.96, 67.08, 67.25, 67.35 (PNCH), 74.75 (d, ${}^{2}J_{CP} = 8.1$ Hz, POCH) and 75.83 (d, ${}^{2}J_{CP} = 7.5$ Hz, POCH); HPLC analysis eluent, heptane/iPr₂O = 80/20, ret. time 10.11 and 10.65 min.

Derivative 28P: ³¹P NMR (C₆D₆) δ 139.993 (*l*-borneol) and 130.301 (d-borneol) ($\Delta \delta = 9.692$).

Derivative 28PS: colorless oil; eluent, cyclohexane/AcOEt = 95/5; yield = 86%; ³¹P NMR (C_6D_6) δ 87.753 (*l*-borneol) and 87.100 (d-borneol) ($\Delta \delta$ = 0.673); ¹H NMR (C₆D₆) δ 0.77-1.8 (m, 22 H), 2.04-2.6 (m, 10 H, PNCH₃, PNCH, and POCHCH₂), 3.55 (m, 1 H, POCH); ¹³C NMR (C_6D_6) δ 14.17 (s, OCHCCH₃), 19.45 (s, CHCH₃CH₃), 20.49 (s, CHCH₃CH₃), 24.95, 28.05, 28.84, 29.07, (NCHCH₂CH₂CH₂CH₂CH₂CHN 29.86 29.69 and POCHCCH₂CH₂CHCH₂), 28.86, 29.16 (PNCH₃), 31.79 (d, ²J_{CP} = 5.9 Hz, PNCH₃) and 32.04 (d, ${}^{2}J_{CP}$ = 5.3 Hz, PNCH₃), 38.05, 38.66 (POCHCH₂), 45.83, 46.03 (POCHCH₂CH), 48.10, 48.37 (CHC(CH₃)₂), 50.18, 50.28 (POCHC), 63.89 (s, PNCH), 66.66, 66.78 (PNCH), 82.59 (d, ${}^{2}J_{CP}$ = 8.0 Hz, POCH) and 83.13 (d, ${}^{2}J_{CP}$ = 7.6 Hz, POCH); GC analysis 250 °C, ret. time 11.2 and 11.4 min.

Derivative 29P: ³¹P NMR (C_6D_6) δ 140.397 and 137.301 ($\Delta\delta$ = 3.096

Derivative 29PS: colorless oil; eluent, cyclohexane/AcOEt = 95/5; yield = 88%; ³¹P NMR (C_6D_6) δ 86.676 and 86.272 ($\Delta\delta$ = 0.404).

Derivative 31P: ³¹P NMR (C_6D_6) δ 137.368 (R enantiomer) and 134.003 (S enantiomer) ($\Delta \delta = 3.365$).

Derivative 31PS: colorless oil; eluent, cyclohexane/AcOEt = 70/30; yield = 95%; ³¹P NMR (\dot{C}_6D_6) δ 87.686 (*R* enantiomer) and 87.349 (*S* enantiomer) ($\Delta\delta$ = 0.337); ¹H NMR (C_6D_6) δ 0.74-1.06 (m, 7 H, NCHCH₂CH₂CH₂CH₂CHN and COOCH₂CH₃), 1.3-1.68 (m, 7 H, NCHCH₂CH₂CH₂CH₂CHN and OCHCH₃), 2.2-2.74 (m, 8 H, PNCH₃ and PNCH), 3.93 (m, 2 H, CO₂CH₂CH₃), 5.3 (m, 1 H, POCH); ${}^{13}C$ NMR (C₆D₆) δ 14.60 (s, COOCH₂CH₃); 19.24 (d, ${}^{3}J_{CP} = 7.7$ Hz, POCHCH₃) and 20.08 (d, ${}^{3}J_{CP} = 3.8$ Hz, POCHCH₃), 24.85 (s, NCHCH₂CH₂CH₂CH₂CHN), 28.55 (PNC-H₃), 28.67, 28.90, 29.30, 29.43 (NCHCH₂CH₂CH₂CH₂CH₂CHN), 31.12, 31.19 (PNCH₃), 61.34 (s, COOCH₂CH₃), 63.55, 63.65 (PNCH), 66.19 (d, ${}^{2}J_{CP}$ = 7.1 Hz, PNCH) and 66.47 (d, ${}^{2}J_{CP}$ = 6.4 Hz, PNCH), 72.51, 72.62, 72.76 (POCH), 171.89, 172.13 (CO). Derivative 32P: ³¹P NMR (C₆D₆) δ 135.272 (R enantiomer)

and 131.513 (S enantiomer) ($\Delta \delta = 2.759$).

Derivative 32PS: yellow oil; eluent, cyclohexane/AcOEt = 70/30; yield = 95%; ³¹P NMR (C₆D₆) δ 87.484 (R enantiomer) and 87.147 (S enantiomer) ($\Delta \delta = 0.337$); ¹H NMR (C₆D₆) δ 0.68–1.00 (m, 4 H, NCHCH₂CH₂CH₂CH₂CH₂CHN), 1.3–1.6 (m, 4 H, NCHCH₂CH₂CH₂CH₂CH₂CHN), 2–2.7 (m, 8 H, PNCH₃ and PNCH), 6.9–8.15 (m, 11 H, POCH and H Ar); $^{13}\mathrm{C}$ NMR (C₆D₆) δ 24.80 (NCHCH₂CH₂CH₂CH₂CHN), 28.51, 28.75 (PNCH₃), 28.61, 28.84, 29.08, 29.24 (NCHCH₂CH₂CH₂CH₂CH₂CHN), 30.61 (d, ${}^{2}J_{CP} = 5.6$ Hz, PNCH₃) and 31.00 (d, ${}^{2}J_{CP} = 5.5$ Hz, PNCH₃), 63.58, 63.66 (PNCH), 66.23 (d, ${}^{2}J_{CP} = 7.2$ Hz, PNCH), and 66.44 (d, ${}^{2}J_{CP} = 6.7$ Hz, PNCH), 81.21 (d, ${}^{2}J_{CP} = 6.5$ Hz, POCH) and 88.08 (d, ${}^{2}J_{CP} = 6.7$ Hz, PNCH) and 88.08 (d, ${}^{2}J_{CP} = 6.7$ Hz = 6.0 Hz, POCH), 129.10, 129.19, 129.26, 129.38, 129.57, 129.87, 133.39, 133.56 (C Ar), 136.31, 136.38, 136.91, 137.08, 137.30, 137.39

(C quat), 195.42 (d, ${}^{3}J_{\rm CP}$ = 6.3 Hz, CO) and 196.17 (s, CO). **Derivative 33P**: 31 P NMR (C₆D₆) δ 143.964 and 131.782 ($\Delta\delta$ 12.182).

Derivative 33PS: slighly yellow oil; eluent, cyclohexane/ AcOEt = 95/5; yield = 89%; ³¹P NMR (C_6D_6) δ 87.686 and 86.676 ($\Delta \delta$ = 1.010); ¹H NMR (C_6D_6) δ 0.75-0.97 (m, 4 H, $NCHCH_2CH_2CH_2CH_2CHN)$, 1.38-1.59 (m, 4 H.

NCHCH₂CH₂CH₂CH₂CHN), 1.92 (d, 3 H, ${}^{3}J_{HP} = 6.0$ Hz, PNCH₃) and 1.99 (d, 3 H, ${}^{3}J_{HP} = 5.5$ Hz, PNCH₃), 2.18-2.35 (m, 1 H, CHNP), 2.49-2.71 (m, 4 H, CHNP and PNCH₃), 5.67 (d, 1 H, ³J_{HH} = 4.6 Hz, $CHCl_2$) and 5.78 (d, 1 H, ${}^{3}J_{HH}$ = 5.7 Hz, $CHCl_2$), 5.96 (dd, 1 H, ${}^{3}J_{HP} = 11.7$ Hz, ${}^{3}J_{HH} = 4.6$ Hz, POCH) and 6.10 (dd, 1 H, ${}^{3}J_{HP} = 14.3$ Hz, ${}^{3}J_{HH} = 5.7$ Hz, POCH); ${}^{13}C$ NMR (C₆D₆) δ 24.30 (s, NCHCH2CH2CH2CH2CH2CHN), 28.28, 29.16 (PNCH2), (CHCHCl₂), 82.66, 83.16 (POCH), 137.20 (C quat); GC analysis 260 °C, ret. time 11.48 and 13.7 min; HPLC analysis eluent,

hepatne/iPr₂O = 95/5, ret. time 11.48 and 13.70 min. Derivative 34P: ³¹P NMR (C₆D₆) δ 139.657 and 134.071 ($\Delta\delta$ = 5.586).

Derivative 34PS: slighly yellow oil; eluent, cyclohexane/ AcOEt = 80/20; yield = 91%; ³¹P NMR (C₆D₆) δ 86.004 and 85.600 $(\Delta \delta = 0.404).$

Derivative 35P: ³¹P NMR (C_6D_6) 143.089 and 131.647 ($\Delta\delta$ = 11.442).

Derivative 35PS: colorless oil; eluent, cyclohexane/AcOEt = 70/30; yield = 85%; ³¹P NMR (C₆D₆) δ 87.551 and 86.205 (Δδ = 1.346); ¹H NMR (C₆D₆) δ 0.7-1.02 (m, 4 H, NCHCH₂CH₂CH₂CH₂CHN), 1.15 (d, 3 H, ³J_{HH} = 6.7 Hz, CH₃CHN(CH₃)₂) and 1.17 (d, 3 H, ³J_{HH} = 6.6 Hz, $(CH_3)_2 NCHCH_3),$ 1.28 - 1.17(m, 4 H. NCHCH₂CH₂CH₂CH₂CH₂CH₂CHN), 1.9–3.0 (m, 15 H, PNCH₃, CHN(CH₃)₂, PNCH, and CHCH₃), 5.65 (dd, 1 H, ${}^{3}J_{HH} = 6.5$ Hz, ${}^{3}J_{\rm HP} = 11.3$ Hz, POCH) and 5.78 (dd, 1 H, ${}^{3}J_{\rm HH} = 7.8$ Hz, ${}^{3}J_{\rm HP} = 14.4$ Hz, POCH), 7.0–7.5 (m, 5 H, H Ar); 13 C NMR (C₆D₆) δ 9.90, 10.28 (CHCH₃), 24.90 (s, NCHCH₂CH₂CH₂CH₂CHN), 28.39, 29.20 (PNCH₃), 28.67, 28.82, 29.01, 29.51, 29.68 (NCHCH₂CH₂-CH₂CH₂CHN), 31.04, 31.39 (PNCH₃), 41.92, 42.10 (CH(CH₃)₂), 63.58, 65.13, 65.28, 65.87, 66.07, 66.65 (PNCH and CHCH₃), 81.02 (d, ${}^{2}J_{CP} = 8.2$ Hz, POCH) and 82.16 (d, ${}^{2}J_{CP} = 7.7$ Hz, POCH), 142.75, 142.94 (C Ar).

Derivatives of Table IV. Derivative 19P: ³¹P NMR (C₆D₆) δ 133.330 and 132.724 ($\Delta \delta$ = 0.606).

Derivative 19PS. This compound was not stable to silica gel chromatography: ³¹P NMR (C_6D_6) δ 79.744 ($\Delta \delta = 0.000$).

Derivative 36P: ³¹P NMR (C_6D_6) δ 136.427 ($\Delta\delta$ = 0.000). **Derivative 36PS:** ³¹P NMR (C_6D_6) δ 79.352 ($\Delta\delta$ = 0.000). **Derivative 37P:** ³¹P NMR (C_6D_6) δ 138.446 and 136.718 ($\Delta\delta$ = 1.728).

Derivative 37PS: ³¹P NMR (C_gD_g) 80.141 and 80.025 ($\Delta \delta$ = 0.118)

Derivatives of Table V. Derivative 38P: ³¹P NMR (C_eD_e) δ 133.262 (S enantiomer) and 133.060 (R enantiomer) ($\Delta \delta$ = 0.202).

Derivative 38PS: colorless oil; eluent, cyclohexane/AcOEt = 95/5; bp = 140 °C (0.5 mm); yield = 89%; IR 980, 1010 cm⁻¹; ³¹P NMR (C₆D₆) δ 87.349 ($\Delta \delta$ = 0.019).

Derivative 39P: ³¹P NMR (C_6D_6) δ 134.137 and 133.464 ($\Delta\delta$ = 0.673).

Derivative 39PS: slighly yellow oil; eluent, cyclohexane/ AcOEt = 95/5; yield = 87%; ³¹P NMR (C_6D_6) δ 87.282 ($\Delta\delta$ = 0.065). 0.065); ¹H NMR $(C_6 D_6) \delta 0.88$ (m, 4 H. NCHCH₂CH₂CH₂CH₂CHN), 1.19 (d, 3 H, ${}^{3}J_{HH} = 7$ Hz, CHCH₃) and 1.20 (d, 3 H, ${}^{3}J_{HH} = 7$ Hz, CHCH₃), 1.37-1.56 (m, 4 H, NCHCH₂CH₂CH₂CH₂CHN), 2.25-2.52 (m, 8 H, PNCH and PNCH₃), 3.00 (m, 1 H, OCH₂CH), 4.12 (m, 2 H, POCH₂), 7.05-7.17 (m, 5 H, H Ar); ¹³C NMR (C₆D₆) 18.44 (s, CHCH₃) and 18.53 (s, CHCH₃), 24.90 (s, NCHCH₂CH₂CH₂CH₂CH₂CHN), 28.72, 28.95, 29.52, 29.68 (NCHCH2CH2CH2CH2CH12CHN), 28.89 (s, PNCH3), 31.85, 31.90, 31.96 (PNCH₃), 41.40, 41.53 (CH₂CHPh), 63.60, 63.69 (PNCH), 66.64, 66.78 (PNCH), 72.64, 72.77, 72.91 (POCH₂), 127.22, 128.10, 128.35, 128.58, 129.10 (C Ar), 144.27 (C quat).

Derivative 40P: ³¹P NMR (C_6D_6) δ 136.830 and 135.080 ($\Delta\delta$ = 0.539).

Derivative 40PS: colorless oil; eluent, cyclohexane/AcOEt = 95/5; yield = 94%; ³¹P NMR (C_6D_6) δ 87.686 ($\Delta\delta$ = 0.016).

Derivative 41P: ³¹P NMR (C_6D_6) δ 132.522 and 131.782 ($\Delta\delta$ = 0.740).

Derivative 41PS: colorless oil; eluent, cyclohexane/AcOEt = 95/5; yield = 90%; ³¹P NMR (C_6D_6) δ 87.215 ($\Delta\delta$ = 0.054); ¹H NMR $(C_6D_6) \delta 0.82-0.90$ (m, 4 H, NCHCH₂CH₂CH₂CH₂CH₂CHN), 1.12 (d, 3 H, ${}^{3}J_{HH} = 6.9$ Hz, CHCH₃) and 1.13 (d, 3 H, ${}^{3}J_{HH} =$

6.9 Hz, CHCH₃), 1.3-1.6 (m, 4 H, NCHCH₂CH₂CH₂CH₂CH₂CHN), 1.79 (m, 2 H, CH₂CHC₆H₅), 2.22-2.53 (m, 8 H, PNCH₃ and PNCH), 2.79 (m, 1 H, CHC₆H₅), 3.91 (m, 2 H, CH₂OP), 7.00-7.19 (m, 5 H, H Ar); ¹³C NMR (C₆D₆) 22.66 (s, CHCH₃) and 22.77 (s, CHCH₃), 24.90 (s, NCHCH₂CH₂CH₂CH₂CH₂CH₂CH₂), 28.70, 29.93, 29.52, 29.69 (NCHCH2CH2CH2CH2CHN), 28.78 (s, PNCH3), 31.89 (s, PNCH₃), 37.03 (s, CH₂CHC₆H₅), 39.60, 39.73 (POCH₂CH₂), 63.66, 63.76 (PNCH), 65.90, 66.03, 66.17 (POCH2), 66.66, 66.77 (PNCH), 126.87, 127.80, 129.20 (C Ar), 147.38 (C quat).

Derivative 42P: ³¹P NMR (C₆D₆) & 133.599 (R) and 133.061 (S) $(\Delta \delta = 0.538).$

Derivative 42PS: colorless oil; eluent, cyclohexane/AcOEt = 95/5; yield = 87%; ³¹P NMR (C₆D₆) δ 87.417 ($\Delta\delta$ = 0.032).

- **Derivative 43P:** ³¹P NMR (C_6D_6) δ 138.446 ($\Delta\delta$ = 0.000). **Derivative 43PS:** ³¹P NMR ($\check{C}_6 \check{D}_6$) δ 87.429 ($\Delta \delta$ = 0.000). Derivative 44P: ³¹P NMR (C₆D₆) § 134.003 (R) and 133.666 (S) $(\Delta \delta = 0.337).$
- Derivative 44PS: colorless oil; eluent, cyclohexane/AcOEt

= 70/30; yield = 94%; ³¹P NMR (C₆D₆) δ 87.722 ($\Delta \delta$ = 0.004). **Derivative 45P:** ³¹P NMR (C_6D_6) δ 136.830 and 135.080 ($\Delta\delta$ = 1.750).

Derivative 45PS: colorless oil; eluent, cyclohexane/AcOEt

= 85/15; yield = 92%; ³¹P NMR (C₆D₆) δ 88.427 ($\Delta\delta$ = 0.024). **Derivative 46P:** ³¹P NMR (C₆D₆) δ 136.292 (d, ⁴J_{PF} = 4.9 Hz)

and 135.619 (d, ${}^{4}J_{\rm PF} = 4.9$ Hz) ($\Delta \delta = 0.673$). Derivative 46PS: colorless oil; eluent, cyclohexane/AcOEt $\begin{array}{l} \textbf{Derivative 46FS: $^{10}\text{Distribution} $^{10}\text{Colores}$ on; endeds, cyclonesane/ACOLt$ = 95/5; yield = 92\%; ^{31}P NMR (C_{e}D_{e}) 0 88.898 (d, $^{4}J_{\text{PF}} = 0.7 \text{ Hz}$)$ and $88.809 (d, $^{4}J_{\text{PF}} = 0.7 \text{ Hz}$) ($\Delta 0 = 0.089$)$. \\ \textbf{Derivative 47P: ^{31}P NMR (C_{e}D_{e}) 0 134.205 and 133.869 ($\Delta 0)$ \\ \end{array}$

= 0.336).

Derivative 47PS: colorless oil; eluent, cyclohexane/AcOEt = 95/5; yield = 91%; IR 910, 1010, 1970 cm⁻¹; ³¹P NMR (C₆D₆)

δ 87.013 and 86.888 (Δδ = 0.125). Derivative 48P: ³¹P NMR (C₆D₆) δ 138.849 (Δδ = 0.000); ¹H NMR (C_6D_6) δ 4.86 (d, 1 H, ${}^3J_{HP}$ = 8.8 Hz, POCHC₆H₅) and 4.58 (d, 1 H, ${}^3J_{HP}$ = 6.6 Hz, POCHC₆H₅) ($\Delta\delta$ = 0.275).

Derivative 48PS: colorless oil; eluent, cyclohexane/AcOEt = 95/5; yield = 93%; ³¹P NMR (C_6D_6) δ 88.009 ($\Delta\delta$ = 0.000); ¹H NMR (CDCl₃) δ 1.01–1.4 (m, 4 H, NCHCH₂CH₂CH₂CH₂CH₂CHN), 1.8-2.05 (m, 4 H, NCHCH₂CH₂CH₂CH₂CH₂CHN), 2.4-2.6 (m, 7 H, PNCH and PNCH₃), 2.7 (m, 1 H, PNCH), 4.99 (d, 1 H, ${}^{3}J_{HP}$ = 11.0 Hz, POCH) and 5.04 (d, 1 H, ${}^{3}J_{HP} = 12.7$ Hz, POCH), 7.2–7.5 (m, 5 H, H Ar); ¹³C NMR (CDCl₃) & 24.06 (NCHCH₂CH₂CH₂C-H₂CHN), 27.92, 27.95, 28.03, 28.60, 28.67 (NCHCH₂CH₂CH₂CH₂CHN and PNCH₃), 30.51, 30.57 (PNCH₃), 63.08, 63.14, 65.59, 65.64 (PNCH), 68.31, 68.37, 68.53, 68.59, 68.75, 68.82 (POCHD), 127.73, 127.84, 128.06, 128.20, 137.04, 137.11 (C Ar).

Derivatives of Chart III and Scheme VII. Derivative 51P: $^{31}\mathrm{P}$ NMR (C₆D₆) δ 147.330 (erythro), 146.906 (threo), 143.003 (threo), 142.707 (erythro) ($\Delta\delta$ (threo) = 3.903 and $\Delta\delta$ (erythro) = 4.623).

Derivative 52P: ³¹P NMR (C_6D_6) δ 146.389 (threo), 144.774 (erythro), 139.591 (erythro), 138.111 (threo) ($\Delta\delta$ (threo) = 8.278 and $\Delta\delta(\text{erythro}) = 5.183)$.

Derivative 53P: ³¹P NMR (C_6D_6) δ 148.235 (threo), 146.387 (erythro), 146.070 (erythro), 143.898 (threo) ($\Delta\delta$ (threo) = 4.337 and $\Delta\delta(\text{erythro}) = 0.317$).

Derivative 53PS: ³¹P NMR (C₆D₆) δ 87.430 (erythro), 87.400 (erythro), 87.093 (threo), 86.945 (threo) ($\Delta\delta$ (erythro) = 0.030 and $\Delta\delta$ (three) = 0.148)

Derivative 54P: ³¹P NMR ($C_6 D_6$) δ 170.348 and 168.531 ($\Delta \delta$ 1.817).

Derivative 54PS: slightly yellow oil; eluent, cyclohexane/ AcOEt = 90/10; yield = 92%; ³¹P NMR (C₆D₆) δ 95.438 and 94.698 $(\Delta \delta = 0.740)$; ¹H NMR (CDCl₃) δ 1.00 (m, 3 H, CH₂CH₃), 1.1-1.4 (m, 7 H, CHCH₃ and NCHCH₂CH₂CH₂CH₂CHN), 1.54-1.72 (m, 2 H, CHCH₂CH₃), 1.78–2.07 (m, 4 H, NCHCH₂CH₂CH₂CH₂CHN), 2.48–2.76 (m, 8 H, PNCH and PNCH₃), 3.12 (m, 1 H, PCH₃); ¹³C NMR (CDCl₃) 11.61, 11.67 (CH₂CH₃), 22.65, 22.75, 23.05, 23.10 (CHCH₃), 24.37, 24.38 (NCHCH₂CH₂CH₂CH₂CH₂CHN), 28.37, 28.42, 28.80, 28.85 (PNCH₃), 28.17, 28.39, 28.71, 28.99 (NCHCH₂CH₂-CH₂CH₂CHN), 31.33, 31.43 (PSCHCH₂), 47.17, 47.25, 47.48, 47.56 (PSCH), 64.51, 64.58 (PNCH).

Derivative 55P: ³¹P NMR (C_6D_6) δ 174.925 and 174.457 ($\Delta\delta$ = 0.468).

Derivative 55PS: slighly yellow oil; eluent, cyclohexane/ AcOEt = 95/5; yield = 91%; ³¹P NMR (C_6D_6) δ 97.457 ($\Delta\delta$ = 0.065); ¹H NMR (CDCl₃) δ 0.8–1.00 (m, 6 H, CH₃CH₂CHCH₃), 1.1–2.15 (m, 11 H, NCHCH₂CH₂CH₂CH₂CHN and CH₃CH₂CHCH₃), 2.5–2.9 (m, 10 H, PNCH₃, PNCH, and PSCH₂); ¹³C NMR (CDCl₃) δ 11.43 (CH₂CH₃), 19.01, 19.09 (CHCH₃), 24.34, 24.41 (NCHCH₂CH₂CH₂CH₂CHN), 28.13, 28.33 (CH₂CH₃), 28.39 (PNCH₃), 28.68, 28.77, 28.85, 28.94 (NCHCH₂CH₂CH₂CH₂CH₂CHN), 29.08 (PNCH₃), 35.85, 35.93, 36.04 (CHCH₃), 41.36, 41.43 (PSCH₂), 64.55, 64.63, 64.69 (PNCH).

Acknowledgment. The authors wish to thank Prof. J. F. Normant, Dr. R. Burgada, and Dr. M. Mulhauser (Rhône-Poulenc, Centre de Recherche des Carrières) for fruitful discussions. The Rhône-Poulenc company is also greatly acknowledged for the financial support of S. M.

Registry No. 7, 137943-76-1; 8, 137943-77-2; 9, 137943-78-3; 9S, 137943-79-4; 10, 137943-80-7; (±)-11, 15892-23-6; 11Pa, 137943-81-8; 11Pb, 138051-22-6; 11'Pb, 138051-23-7; 11Pc, 137943-82-9; 11/Pc, 138051-24-8; 11POb, 137943-83-0; 11/POb, 138051-25-9; 11POc, 137943-84-1; 11/POc, 138051-26-0; 11POd, 137943-85-2; 11/POd, 138124-49-9; 11PSa, 137943-86-3; 11/PSa, 138051-27-1; 11PSb, 138051-28-2; 11/PSb, 138051-29-3; 11PSc, 137943-87-4; 11/PSc, 138051-30-6; (±)-12, 4128-31-8; (S)-12, 6169-06-8; 12P, 131897-19-3; 12P, 131780-03-5; 12PO, 137943-88-5; 12'PO, 138051-31-7; 12PS, 131780-20-6; 12'PS, 131898-25-4; (±)-13, 70116-68-6; 13PO, 137943-89-6; 13'PO, 138051-32-8; (±)-14, 65337-13-5; 14PO, 137943-90-9; 14'PO, 138051-33-9; (±)-15, 21632-19-9; (S)-15, 33652-83-4; 15P, 137943-91-0; 15'P, 138051-34-0; 15PO, 137943-92-1; 15'PO, 138051-35-1; 15PS, 137943-93-2; 15'PS, 138051-36-2; (±)-16, 37911-28-7; 16PO, 137943-94-3; 16'PO, 138051-37-3; (±)-17, 119046-43-4; 17P, 137943-95-4; 17'P, 138124-50-2; 17PO, 137943-96-5; 17'PO, 138124-51-3; (±)-18, 67738-25-4; 18P, 137943-97-6; 18'P, 138051-38-4; 18PS, 137943-98-7; 18-PS, 138051-39-5; (±)-19, 22564-99-4; 19P, 138124-52-4; 19'P, 138125-58-3; 19PS, 138124-53-5; 20, 137943-99-8; 21, 137944-00-4; 22, 91633-80-6; (±)-22, 138051-40-8; 22S, 137944-01-5; (\pm) -24, 13323-81-4; 24P, 137944-02-6; 24'P, 138051-41-9; 24PS, 138125-59-4; 24'PS, 137944-03-7; (±)-25, 6118-14-5; 25P, 138051-42-0; 25'P, 138051-43-1; 25PS, 138051-44-2; 25'PS, 138051-45-3; (-)-26, 2216-51-5; 26P, 138051-46-4; 26'P, 138051-47-5; 26PS, 138051-48-6; 26'PS, 138051-49-7; (+)-27, 2216-52-6; 27P, 131897-22-8; 27'P, 131897-11-5; 27PS, 131897-32-0; 27'PS, 131897-12-6; (-)-28, 464-45-9; 28P, 137944-04-8; 28'P, 138051-50-0; 28PS, 138125-60-7; 28/PS, 137944-05-9; (±)-29, 56007-85-3; 29P, 137944-06-0; 29'P, 138051-51-1; 29PS, 137944-07-1; 29'PS, 138051-52-2; (±)-30, 18826-95-4; (S)-31, 687-47-8; 31P, 131897-23-9; 31'P, 131780-08-0; 31PS, 131897-33-1; 31'PS, 131780-09-1; (S)-32, 5928-67-6; 32P, 131897-24-0; 32P, 131780-10-4; 32PS, 131897-34-2; 32'PS, 131780-11-5; (±)-33, 105120-61-4; 33P, 138125-61-8; 33'P,

137944-08-2; 33PS, 137944-09-3; 33'PS, 138051-53-3; (±)-34. 93059-59-7; 34P, 137944-10-6; 34'P, 138051-54-4; 34PS, 137944-11-7; 34'PS, 138051-55-5; (+)-35, 42151-56-4; 35P, 137944-12-8; 35'P, 138051-56-6; 35PS, 137944-13-9; 35'PS, 138051-57-7; (±)-36, 138051-58-8; 36P, 137944-14-0; 36PS, 137944-15-1; (±)-37, 19641-57-7; 37P, 137944-16-2; 37/P, 138051-59-9; 37PS, 137944-17-3; 37'PS, 138051-60-2; (±)-38, 34713-94-5; 38P, 137944-18-4; 38'P, 138051-61-3; 38PS, 137944-19-5; (±)-39, 98103-87-8; 39P, 137964-59-1; 39'P, 138125-62-9; 39PS, 137964-60-4; (±)-40, 111767-94-3; 40P, 137944-20-8; 40'P, 138051-62-4; 40PS, 137944-21-9; (±)-41, 86495-15-0; 41P, 137944-22-0; 41'P, 138051-63-5; 41PS, 137944-23-1; (S)-42, 7540-51-4; 42P, 131897-17-1; 42'P, 131779-97-0; 42PS, 138124-54-6; (±)-43, 111768-05-9; 43P, 137944-24-2; 43PS, 137944-25-3; (S)-44, 22323-82-6; 44P, 131897-15-9; 44'P, 131779-93-6; 44PS, 138051-64-6; (±)-45, 138051-65-7; 45P, 137944-26-4; 45'P, 138051-66-8; 45PS, 137944-27-5; 46, 134931-07-0; 46P, 138051-67-9; 46P, 138051-68-0; 46PS, 138124-55-7; 46/PS, 138124-56-8; (±)-47, 131780-19-3; 47P, 138051-69-1; 47'P, 138051-70-4; 47PS, 138051-71-5; 47'PS, 138051-72-6; (±)-48, 52949-66-3; 49P, 137944-28-6; 49PS, 137944-29-7; erythro-(±)-51, 138124-57-9; threo-(±)-51, 138124-58-0; 51P (isomer 1), 137944-30-0; 51P (isomer 2), 138124-59-1; 51P (isomer 3), 138124-60-4; 51P (isomer 4), 138124-61-5; erythro-(±)-52, 138124-62-6; threo-(±)-52, 138124-63-7; 52P (isomer 1), 137944-31-1; 52P (isomer 2), 138124-64-8; 52P (isomer 3), 138124-65-9; 52P (isomer 4), 138124-66-0; $erythro(\pm)$ -53, 138051-73-7; threo-(±)-53, 114180-72-2; 53P (isomer 1), 137944-32-2; 53P (isomer 2), 138051-74-8; 53P (isomer 3), 138051-75-9; 53P (isomer 4), 138051-76-0; 53PS (isomer 1), 138125-63-0; 53PS (isomer 2), 137944-33-3; 53PS (isomer 3), 138124-67-1; 53PS (isomer 4), 138124-68-2; (±)-54, 91840-99-2; 54P, 137944-34-4; 54P, 138051-77-1; 54PS, 137944-35-5; 54'PS, 138051-78-2; (±)-55, 110549-12-7; 55P, 137944-36-6; 55'P, 138051-79-3; 55PS, 137944-37-7; HMPT, 1608-26-0; Cl₃OP, 10025-87-3; Cl₃PS, 3982-91-0; (R,R)-N,N'-dimethylcyclohexane-1,2-diamine, 68737-65-5; (R,R)-N,N'-diisopropylcyclohexane-1,2-diamine, 137944-38-8; (R,R)-(-)-cyclohexane-1,2-diamine, 20439-47-8; (R,R)-diethyl 1,2-cyclohexanediylbiscarbamate, 75730-13-1; (R,R)-N,N'-dimethyl-1,2-diphenylethylene-1,2-diamine, 118628-68-5; (R,R)-N,N'-dimethyl-1,2-[bis(m-trifluoromethyl)phenyl]ethylene-1,2diamine, 137944-39-9.

Supplementary Material Available: ¹H and ¹³C NMR data for products 7, 10, 21, 12PO, 15PO, 16PO, 19PS, 24PS, 25PS, 29PS, 34PS, 38PS, 40PS, 42PS, 44PS, 45PS, 46PS, and 47PS and ³¹P, ¹H, and ¹³C NMR spectra of products 15P, 15PS, 16PO, 18P, 18PS, 19P, 19PS, 22, 22PS, 25P, 25PS, 27P, 27PS, 31P, 31PS, 32P, 32PS, 33P, 33PS, 34P, 34PS, 35P, 35PS, 39P, 39PS, 42P, 42PS, 44P, 44PS, 45P, 45PS, 47PS, 48PS, 54P, 54PS (78 pages). Ordering information is given on any current masthead page.

1,2- vs 1,4-Addition of Nucleophilic Organometallics to Nonracemic 2-(1-Naphthyl)- and 2-Cinnamyl-1,3-oxazolidines

Lendon N. Pridgen,* Mohamed K. Mokhallalati,¹ and Ming-Jung Wu²

SmithKline Beecham Pharmaceuticals, Synthetic Chemistry Department, P.O. Box 1539, King of Prussia, Pennsylvania 19406

Received April 1, 1991 (Revised Manuscript Received November 4, 1991)

We herein report our results where the addition of organomagnesium reagents to 2-(1-naphthyl)- and 2cinnamyl-1,3-oxazolidines occurred consistently in a 1,4-conjugate manner, while lithium, cerium, and copper organometallic reagents added in a 1,2-fashion. The 1,4-conjugate addition pathway was primarily exploited by using (4R)-2-(1-naphthyl)-4-phenyl-1,3-oxazolidine (4) as a substrate to obtain, after NaBH₄ reduction of the intermediate aldehyde, trans-disubstituted 1,2-dihydronaphthalenes with enantiomeric excesses of 93-94%. The amino alcohol products resulting from 1,2-addition were oxidatively cleaved to afford enantiomeric enriched (R)- α -(1-naphthyl)alkylamines 6a and 6b in >99% ee.

We have previously reported our results concerning nucleophilic addition to (4R)-2-aryl-4-phenyl-1,3-oxazoli-

dines 1 wherein diastereomerically enriched amino alcohols 2 were obtained in moderate to good yields.^{3a,b} In that